
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Virtually Secure Browser

Seth Misenar 1

A Virtually Secure Browser

 GSEC Gold Certification

Author: Seth Misenar seth@contextsecurity.com

Adviser: Jim Purcell

Accepted: June 13, 2009

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Virtually Secure Browser

Seth Misenar 2

Abstract

This paper will discuss an increasingly important aspect of

information security, the browser. I will first survey the

current threat and vulnerability landscape associated with the

browser. After basic risk assessment, I will proffer two

virtualization oriented approaches, sandboxing and application

virtualization, which could help to mitigate the increased risk

associated with using a browser. Finally, I will explore two

applications, Sandboxie and ThinApp, which serve as

representative examples of how one can leverage sandboxing and

application virtualization to possibly achieve greater browser

security.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

A Virtually Secure Browser

Seth Misenar 3

Table of Contents

1. Introduction...5

2. Browser (In)security...7

2.1 Threat and Vulnerability Landscape 7

2.1.1 Threat Trends ..7

2.1.2 Vulnerability Trends ..10

2.2 The Browsers ... 11

2.2.1 Internet Explorer ...12

2.2.2 Firefox ...13

3. Sandboxing..16

3.1 Sandboxie .. 19

4. Application Virtualization..................................23

4.1 ThinApp .. 24

5. Conclusions...29

6. References..31

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

1. Introduction

As organizations have shown themselves more capable of

applying basic operating system patches and denying trivial

access to unnecessary services on internet facing systems,

attackers have been engaging more regularly in client side

attacks. Exploits leveraging vulnerabilities in basic client

productivity applications have become increasingly common

(Turner, 2008a). Enterprise organizations have been forced to

bolster their patch management capabilities to account for

client side applications rather than merely maintaining basic

Operating System patches. Even those organizations that have

shown a great facility for patching 3rd party desktop

applications generally are still encumbered with the significant

exposure due to allowing end users to access the internet for

web browsing purposes.

Although few would deny that the best solution to the

pernicious problem of browser related security exposure is to

simply deny end users the right to access the internet through a

browser, I find this solution to be largely untenable for the

modern enterprise1. This paper will work from the assumption

that the browser is indeed a necessary component for at least

some end users, but one that is due some security oriented

1 Although this paper will proceed under the assumption that users accessing the internet via the browser is, in
fact, necessary, this fact needs to be borne out in your environment. Each organization might find segments of
their population that, in all honesty, have no pressing business need for internet access. Naturally, the most
secure option in this case is to remove the superfluous access.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

attention. The goal of this paper will be to provide a very

brief exploration of different attack vectors affecting web

browsers, and then to posit a better method for securing, and

maintaining the security of browsers through virtualization.

To this end, two approaches to browser virtualization will

be considered, sandboxing and application virtualization.

Sandboxie will be the product used to explore the sandboxing

approach to browser security. Sandboxing, as it relates to

browser security, implies only exposing to the browser a

virtualized environment with which to interact2. After use, the

sandbox to which the browser has potentially written changes can

be completely wiped. This approach to virtualization provides

for the end user controlling what will and will not be allowed

through the sandbox.

For some organizations the degree to which Sandboxie might

require end user involvement could present a significant

obstacle to deployment. VMWare’s ThinApp (formerly Thinstall)

will be offered as an alternative means for browser security

through application virtualization. ThinApp presents a

different virtualization paradigm than does Sandboxie. Rather

than virtualizing the operating system components with which the

browser will interact, ThinApp can be used to virtualize the

browser itself, which can be streamed from a central server

using a particular standardized configuration. The possibility

for centralized management and control of the browser might

2 As a point of fact, Sandboxie is never described on its website as a virtualization product, but rather simply as a
tool that leverages isolation.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

remove one of the major disincentives to enterprise adoption of

Firefox. While a default install of Firefox is not demonstrably

more secure than the latest offering of Internet Explorer, the

extensibility of the browser does seem to offer some additional

functionality with respect to security.

Browser insecurity presents a significant exposure to large

organizations. This paper seeks to offer two differing

approaches to virtualization as means by which we can mitigate

some of this risk associated with browsers. However, before

proffering the solutions, we need to have at least a basic

understanding of some of the problems which are in need of

remedying.

2. Browser (In)security

 Though our task is not specifically to review the vast

landscape of browsers and their relevant security, or lack

thereof, a brief exploration of the current threat and

vulnerability environment, as it pertains to browsers, will aid

us in our review of the efficacy of virtualization as means to

achieve a more secure browser. After a brief overview of the

threats and vulnerabilities related to browsers, I would be

remiss to not also at least touch on the current major browser

offerings as they relate to security.

2.1 Threat and Vulnerability Landscape

2.1.1 Threat Trends

 Symantec's Internet Security Threat Reports always contain

some timely insight on threat trends. The latest offering,

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Internet Security Threat Report Volume XIII: April, 2008, is

certainly no departure from their usual quality. The most

important trend related to our purpose is summarized by their

highlight, “malicious activity has become web-based” (Turner,

2008a, p. 2). Obviously not all malicious activity is web

based, but “attackers adopted stealthier, more focused

techniques that target individual computers through the World

Wide Web” (Turner, 2008a, p. 2). Although throughout the

industry there have been various reasons suggested for this

trend, we need not bother ourselves with questions of causality,

but rather suffice with acknowledgement of this trend. Though

there are some client oriented applications that are rather

pervasive, Microsoft Office immediately springs to mind, few, if

any, are as ubiquitous as the browser. Opportunistic attackers

could do little better for themselves than by weaponizing an

exploit targeting the browser as a threat vector.

 To this end, we find another major attack trend to be

attackers creating or co-opting websites as a delivery mechanism

to automatically infect browsers of said site. This nefarious

technique is commonly known as drive-by malware or drive-by

downloads. This technique has become an increasingly common

vector, which is highly successful given the rising numbers of

browser and third party extension vulnerabilities. A recent

study tested more than 60 million unique URLs, and found that

over 3 million of those tested were hosting malware in this

fashion (Provos, Mavrommatis, Abu Rajab, & Monrose, 2008, p. 5).

While that percentage might seem astounding, the efficacy of

these malware propagation sites would be be appreciably

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

diminished if they merely existed and were not widely referenced

or linked. However, the same study found that Google queries

return at least one of these nefarious sites almost 1.3% of the

time (p. 5). Further, of the “top one million URLs appearing in

the search engine results, about 6, 000 belong to sites that

have been verified as malicious” (p. 5). The prevalence of

drive-by download sites coupled with the highly vulnerable

surface area presented by the common browser+plugin armed user

makes for a rather malware infested petri dish. Although the

aforementioned study makes it clear that infections could still

occur by simply letting users stumble across malware pushing

sites on their own, a more common method is for the attackers to

entice the browser to visit the malicious site via a simple

email, IM, or other form of social engineering.

 Our next threat trend, phishing, further leverages social

engineering to attack users. With phishing, an attacker

typically attempts to trick users into providing otherwise

confidential information. The way in which phishing attempts to

trick the user is by making the user believe that they are

disclosing the information to a legitimate site. The most basic

form of phishing would be for the attacker to present a site

that appeared, at first glance, much like the legitimate site to

which the user might conceivable disclose this information

during the normal course of business.

 Though there are certainly other threat trends important to

discussion of browser security, we will take this as our point

of departure from the threat landscape and instead turn to

vulnerability trends.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

2.1.2 Vulnerability Trends

 If threat is one side of the risk coin, then vulnerability

is surely the other. Even if attackers were more commonly

banging against client side applications, if there was no

underlying vulnerability that could be touched then the risk of

compromise would be moot. Sadly, as you would expect, there

seems to be no shortage of vulnerabilities in the browser and

related helper applications. The most recent Symantec Global

Internet Threat Report suggested that during 2007 that for all

but one vendor included in the study the majority of patched

vulnerabilities pertained to browser or client side applications

(Turner, 2008b, p. 6).

 In addition to the growing prevalence of browser

vulnerabilities, there is also no shortage of websites with

Cross Site Scripting (XSS) vulnerabilities that can be

exploited. Although “XSS is an attack technique that forces a

Web site to display malicious code,...the server is merely the

host, while the attack executes within the Web browser”

(Grossman, Hansen, Petkov, Rager, p. 68, 2007). Though XSS has

been known since 1999, most people do not understand how often

it is used to exploit browsers. Exploitation of an XSS

vulnerability can be extremely damaging to both the system

running the victim browser as well as the network on which that

client is situated. For example, a compromised client can be

used as a pivot point such that, effectively, an external

attacker can leverage an the compromised internal system's

vantage point for launching further attacks (Cross et al., p.

172, 2007).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 Another vulnerability in which the browser is actor during

exploitation is known as Cross Site Request Forgery (CSRF).

Attacks against CSRF vulnerabilities are ones that exploit the

browser itself, but rather leverages the trust that a vulnerable

application places in an authenticated browser. The actual

vulnerability lies in the fact that an attacker can somehow get

an authenticated browser to, with the users intent, submit a

transaction, which the application implicitly trusts because it

was submitted from an authenticated user (Stuttard, Pinto, p.

442, 2007). Imagine an attacker tricking a user into clicking a

link which caused the “transfer funds” functionality of a bank

to be invoked. Again, this isn't an attack against the browser

itself, but the browser contributes to the exploitation of CSRF

vulnerabilities, and the user on the other end of the browser is

commonly the one being ultimately abused.

2.2 The Browsers

 Although there are hundreds of web browsers currently

available in the marketplace, we, and our friend the

opportunistic attacker will focus on the more major players.

The most common browsers, as reported by Net Applications in

January of 2009, are, in order by percent market share: Internet

Explorer (68.15%); Firefox (21.34%); Safari (7.93%); Chrome

(1.04%); Opera (0.71%) (Browser Market Share, 2009). Although

both Safari and Chrome are trending upwards with respect to

market share, Internet Explorer and Firefox currently seem to be

the browsers of choice for the vast majority of users (Top

Browser Share Trend, 2009). The goal of this section is to

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

provide a quick security related overview of the two most

popular browsers found today.

2.2.1 Internet Explorer

 Although Internet Explorer 8 is, at the time of writing,

currently available for download, it is still in Beta and has

not yet seen wide adoption.3 The most widely used version of

Internet Explorer is currently Internet Explorer 7 (IE7), which

was released in October of 2006. Currently, Secunia lists IE7

as having had 70 vulnerabilities over its lifetime, 33 of which

have had Secunia advisories created for them with 45% being

deemed “highly critical” or above (Vulnerability Report:

Microsoft Internet Explorer 7.x, 2009). Also noteworthy is that

Secunia suggests that there are currently 9 unpatched

vulnerabilities in Internet Explorer 7 with the most severe

being rated “moderately critical” (Vulnerability Report:

Microsoft Internet Explorer 7.x, 2009). The number of patched

and unpatched vulnerabilities notwithstanding, Internet Explorer

7 does present a vastly more secure application than its

previous iterations of this popular browser.

Internet Explorer Extensions

 Though not nearly as robust or numerous as the possible

extensions to Firefox, there are some free addons that bolster

the security of Internet Explorer. WOT, Web of Trust, is

available for both Firefox and Internet Explorer and provides a

3 It also seems likely that adoption after IE8 goes gold will take considerable time given the continued use of IE6
(around 20% market share) more than two years after IE7's release (Browser Market Share, 2009).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

visual indicator of how risky other users have found a site to

be. Additional information on WOT can be found here:

http://www.mywot.com. One of the first addons to significantly

increase the security of Internet Explorer was DropMyRights by

Michael Howard. The purpose of this addon is to ensure that,

even if the user running the browser had administrative

privileges, Internet Explorer will run with limited privileges,

which could mitigate the impact of some successful exploits.

Additional information can be found here:

http://nonadmin.editme.com/DropMyRights

Enterprise Management

 Perhaps the most significant security advantage that

Internet Explorer offers is its ability to be managed on an

enterprise scale via Group Policy. This feature alone is

typically enough to make pursuing alternate browsers a foregone

failure. Every other browser typically presents a rather

significant administrative burden to centrally manage in the way

that Internet Explorer can be.

2.2.2 Firefox

 Firefox 3, which was released June 2008, is the most

popular alternative to Microsoft's Internet Explorer 7.4 In the

6 months since its release, Secunia notes 39 vulnerabilities and

has released 8 advisories of which 75% were rated “highly

critical” or above (Vulnerability Report: Mozilla Firefox 3.x,

4 Strictly speaking, current market share reports still at times show Internet Explorer 6 to be the second most
popular browser to Internet Explorer 7, with Firefox 3.0 presenting the 3rd most popular browser (Browser
Market Share, 2009).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

2009). Although Firefox offers security features built into the

browser, perhaps the most significant security feature of the

browser lies in its aforementioned ability to be extended using

freely available code. It should also be noted that this

extensibility can, and has, been leveraged for nefarious

purposes as well by means of malicious extensions, such as

FirestarterFox and FFsniFF (Costoya, 2006).

Firefox Extensions

 As alluded to above, the most significant reason that

Firefox presents a compelling alternative to Internet Explorer

is due to its numerous freely available extensions. Most

extensions, which can typically be found at

https://addons.mozilla.org, have nothing to do with security, but

there are some extremely compelling browser security oriented

extensions. We highlight a few of these offerings below:

NoScript – Perhaps the most important Firefox security extension

is NoScript developed by Giorgio Maone. At its most basic,

NoScript blocks Java, JavaScript, and Flash from running on

untrusted pages. By default, almost all sites are configured as

untrusted, allowing the user to select which, if any, domains

are allowed to execute these types of client side code. There

are many more security features beyond the simple, yet

effective, default deny stance to client side code (Noscript).

Firekeeper – Firekeeper is an experimental Firefox security

extension that seeks to serve as an intrusion detection system

(IDS) for the browser. (FireKeeper).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

RequestPolicy – RequestPolicy is an experimental Firefox

Extension that configures the browser with a default deny

posture with respect to cross site requests. This extension can

provide significant protection against the exploitation of CSRF

attacks. Some mistakenly believe that NoScript provides ample

protection against CSRF attacks (RequestPolicy).

WOT – The WOT (Web of Trust) extension seeks to warn the end

user about potential risky websites before allowing access. In

addition the extension can integrate with common search engines

and webmail, providing a visual indicator of the level of trust

that other users have placed in the target site. WOT can prove

especially helpful in protecting the user from phishing sites

and drive-by malware sites (WOT: Web of Trust).

Enterprise Management

 While extensions provide the most significant security

advantage that Firefox wields over Internet Explorer, Firefox's

lack of enterprise management represents the most significant

disadvantage. Firefox does not natively integrate with

Microsoft's Group Policy, and does not offer a compelling

alternative means for the manageability of browsers once

installed on end-users systems. Effectively, most enterprise

deployments of Firefox rely on the users themselves for

maintaining the patches, configuration, and extensions. This

lack of central management presents an extreme disincentive for

enterprise deployment, and significantly decreases the value of

additional security that might be had through Firefox's

extensions.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Browsers Reloaded

 Since the browser is commonly targeted by attackers, let's

consider methods to harden the browser and resist browser based

attacks. Sandboxing and application virtualization are currently

external to the browsers themselves, though these approaches may

well be adopted as part of future browsers.5 Some particular

challenges associated with the security of browsers include

patching, configuration, and maintenance of the browser as well

as 3rd party ancillary applications. Further, the threat of

drive-by malware installation, Cross Site Scripting attacks, and

the impact of Cross Site Request Forgery attacks should also be

a consideration when thinking on browser security.

3. Sandboxing

 The technical concept known as a sandbox dates back quite

some time. Although the term sandbox is used quite widely

within computing to mean various things, the most well known

example of of a sandbox is offered by Java Applets.6 The concept

of the sandbox security model is very clearly defined within

early versions of Java, so we will take a moment and reflect on

this notion since much of this paper will be spent explicating

this idea with respect to browsers.

5 Google Chrome, though currently in beta, is suggested to be using isolation techniques from their acquisition of
GreenBorder to achieve greater resilience in the browser (Methvin, 2008). While this technique is intended
primarily for performance and better end user experience when using thicker and thicker web based
applications, it will likely also be leveraged for security sandboxing type functionality.

6 Although, strictly speaking, the sandbox security model is employed more widely than just applets with
versions starting with Java 2 (Oaks, 2009).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

This security model centers around the idea of a sandbox.

The idea is when you allow a program to be hosted on your

computer, you want to provide an environment where the

program can play (i.e. run), but you want to confine the

program's play area in certain bounds. You may decide to

give the program certain toys to play with (i.e., you may

decide to let it have access to certain system resources),

but in general, make sure that the program is confined to

its sandbox. (Oaks, p. 10, 2001)

From the above, we can see that the goal of the sandbox is

twofold: first, we would like to allow the ostensibly untrusted

code the ability to run; second, we would like to be certain

that its running will not impact the rest of our systems. The

reference above also hints at the idea of being able to offer

the untrusted code extra “toys” with which to play. The

possibility of allowing other, possibly trusted, code to play in

the sandbox with the untrusted code is important to note, as it

can allow for a richer experience when we turn our attention to

the browser.

 Though we have spent time detailing what is traditionally

meant by the term sandbox with respect to information security,

we are now going to discuss the efficacy of the sandbox notion

as it applies to browser security. Let us set the stage.

Imagine a piece of code that has become at once vital to the

performance of the majority of job functions, and yet is also

plagued with a rather constant barrage of attacks. Further

imagine that the selfsame functionality required by the code to

carry out its legitimate and well intentioned tasks is that

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

which is also most commonly abused by the attackers. That code

is the browser.

 Applications are being pushed onto a web server that we

never even thought possible to be run in that environment. Part

of the reason that novel applications are web enabled is due to

the increasingly thick web technologies: AJAX; ActiveX; Flash;

Silverlight; AIR; etc. More of our infrastructure is leveraging

web front-ends for management and review. The browser is

absolutely ubiquitous. With that ubiquity comes highly

motivated attackers looking to exploit weaknesses in the same

technologies that are being used by legitimate applications.

This “double-edged sword” aspect of the browser's features

being, at once, what both attackers and applications leverage,

engenders the need for a different type of security than is

typical of most other applications and systems. Certainly, a

hardened browser configuration would be advantageous from a

security perspective, but the hardening countermeasures most

likely to disrupt attackers also frequently disrupt legitimate

users.

 What then does a sandbox offer to the browser from the

vantage point of security? First and foremost, a sandbox can

allow the browser limited access to critical system files,

libraries, and binaries. Only the components and access

necessary for the function of the browser can be offered for

interaction. Thus, should a browser vulnerability be exploited,

perhaps the impact of the threat could be more limited. Further,

an additional aspect of a sandbox is that it can provide a

facade of storage to the browser. As far as the browser is

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

concerned it is capable of writing permanent changes to hard

disk. However, in reality, the sandbox can provide simply an

abstracted virtual storage than can ultimately be discarded.

This last point is especially important for browser security.

Most browser based exploits attempt to make persistent changes

to the underlying system so as to provide ongoing interaction

with the attacker or solidify a piece of malware's foothold in

the system. Although some attacks could still be devastating

even if they do not have the ability to persist, many attacks

and malware would be greatly limited if unable to make lasting

changes to the underlying system.

3.1 Sandboxie

 To illustrate both some of the security gains as well as

the limitations of sandboxing the browser, we will turn our

attention to Sandboxie. Though there are indeed other

applications that effect some of the same functionality as is

offered by this product, Sandboxie's low unit cost (less than

$11/seat with as few as 100 seats) and robust feature set make

it especially compelling (Sandboxie Online Store). Sandboxie's

author is Ronen Tzu, who first developed the program in 2004 in

response to his computer being infected with spyware (Gibson &

Laporte, 2008). Though the program was initially designed

specifically to run Internet Explorer in an isolated fashion,

the functionality now has been abstracted to provide isolation

for myriad programs and their interaction (Gibson & Laporte).

 Before delving specifically into how Sandboxie serves as an

salve for our browser security woes, let us attend to how

Sandboxie functions more generally. The Frequently Asked

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Questions page of the Sandboxie website provides a nice little

analogy, which explains the basic functionality offered by this

tool:

 Think of your PC as a piece of paper. Every program you run

writes on the paper. When you run your browser, it writes on

the paper about every site you visited. And any malware you

come across will usually try to write itself into the paper.

Traditional privacy and anti-malware software try to locate

and erase any writings they think you wouldn't want on the

paper. Most of the times they get it right. But first the

makers of these solutions must teach the solution what to

look for on the paper, and also how to erase it safely.

On the other hand, the Sandboxie sandbox works like a

transparency layer placed over the paper. Programs write on

the transparency layer and to them it looks like the real

paper. When you delete the sandbox, it's like removing the

transparency layer, the unchanged, real paper is

revealed. (Sandboxie - FAQ)

The paper analogy not only conveys Sandboxie's functionality,

but also serves to differentiate its approach from more

traditional antimalware solutions. Sandboxie serves as a

prophylactic layer that blocks all permanent interaction with

“the paper”, whereas most traditional antimalware solutions

merely try to block specific “words” from being written to “the

paper” (or, commonly, scan the words written for evidence of

those bad “words”). Though the changes applied to this

transparent prophylactic layer are typically discarded, they

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

need not be. With respect to the web browser, for simple

browsing and web application usage, the read-only default should

suffice, however, should a downloaded file or component be

needed, recovery, is fairly straightforward, albeit manual.

 Even with this simplistic understanding of the basic

functionality provided by Sandboxie, we can already begin to see

how this might serve to protect our users some from of the more

nefarious threats to the browser. At its most basic, Sandboxie

can provide protection against the threat of drive-by-downloads

having a persistent impact. As soon as the infected sandboxed

browser is terminated, the ongoing threat agent can be purged

from the disks. Perhaps the most important security setting to

be used with Sandboxie is the AutoDelete=yes in the sandbox.ini

file. This will cause the purging of the sandbox to occur

automatically upon exiting the sandboxed program.

 One of the biggest challenges of Sandboxie in an enterprise

is that in order for us to realize some of the benefits of its

use requires us to delete the sandbox to ensure that any

malicious changes will not persist. Since all downloaded files,

writes to disk or registry, actually occur in the sandbox, files

that a user intentionally downloaded will also be deleted when

the sandbox is purged. Although this will necessarily require

user awareness training, Sandboxie, through its Quick Recovery

command, does attempt to make it easier for the end user to

quickly recover changes intentionally made to, by default, the

Desktop, Favorites, and My Documents folders (SandBoxie – Quick

Recovery). Further, the AutoRecover=yes setting can be

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

configured in the sandbox.ini file to automatically move files

from the sandbox to the physical system.

Sandboxie Settings:

 This section will provide a quick list of important

Sandboxie settings that can be configured in the sandboxie.ini

file.

AutoDelete – This setting forces the contents of the sandbox to

be automatically deleted upon exiting the sandboxed program.

(Sandboxie – AutoDelete).

AutoRecover – Although it might seem counterintuitive, this

setting can be used along with the AutoDelete setting.

AutoRecover ensures that all files that would be found in the

Quick Recovery are automatically moved from the sandbox to the

physical disk. Granular control of which folder paths, file

names, extensions are included or excluded from quick

recovery.(Sandboxie – AutoRecover).

DropAdminRights – This setting causes any program running from

the sandbox with administrative rights to have those privileges

stripped from it. (Sandboxie – Drop Admin Rights).

ClosedFilePath – This setting allows for all access, including

read, to be disallowed for specific file program configurations.

Note: By default sandboxed applications can read anything the

application would normally be able to read, but simply cannot

make actual changes to the system. (Sandboxie – Closed File

Path).

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

OpenFilePath – While typically all writes are denied for

sandboxed applications, the OpenFilePath setting can allow

certain paths to be exposed for actual permanent writes.

(Sandboxie – Open File Path).

4. Application Virtualization

 An alternative virtualization approach that could prove

useful for browser security exists in application

virtualization. As discussed above, one of the most formidable

challenges presented by browser security are related to the

ongoing maintenance of the browser configuration. Not only are

we tasked with patching the browser itself, we must also be

vigilant in the patching and secure configuration of all of the

helper applications and extensions: Acrobat Reader; Flash;

Quicktime; Windows Media Player; Webex; Skype; etc.;. Each of

these applications that serve to extend the functionality of the

browser also increase the attack surface area of the browser.

While some enterprises seem capable of attempting to manage the

configuration and patch level of Internet Explorer, most are

rather incapable at even keeping all clients' Internet Explorer

patched, let alone all of the plugins, and refuse to even try

with any browser other than Internet Explorer. Enter application

virtualization.

 Although precisely defining a term that is commonly

(ab)used by vendors can be difficult, a decent working

definition is: Application virtualization separates a program

from the underlying operating system and seeking to increase the

portability, manageability and compatibility of applications

(Dittner, Rule, 2007). Though virtualized applications are not

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

actually installed on the endpoint system, the application is

still executed as if it were. For our purposes, the most salient

aspect of the definition above is the “manageability” that

application virtualization can afford us. The ostensibly

unattainable goal of achieving a homogeneous and consistent

browser deployment becomes possibly achievable. With

application virtualization, one centrally located instance of

the application in question, here, the browser, can be, not

only, patched and hardened prior to deployment, but also

maintained almost seamlessly throughout the applications life

cycle. The technology that provides the basis for this

functionality has existed for some time, but their utility for

browser security still seems somewhat novel.

 There are many and varied applications that provide this

type of functionality: Citrix XenApp; Microsoft Application

Virtualization (formerly SoftGrid); VMWare ThinApp (formerly

Thinstall); etc.. Our attention will be focused on VMWare

ThinApp. However, this selection is simply to focus attention

on one product rather than suggesting its superiority when

compared to other solutions.

4.1 ThinApp

 Prior to being owned by VMWare, ThinApp was known as

Thinstall, and was developed by a company of the same name.

Soon after the January 2008 acquisition of Thinstall by VMWare,

the product was rebranded as ThinApp. Though the name has

changed, the solution remains largely unmodified from its

initial incarnation. The ThinApp approach is a patently more

enterprise oriented endeavor than Sandboxie. This overtly

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

enterprise approach comes with attendant costs and benefits.

Perhaps the most important benefit for our purposes is

ThinApp's capabilities for centralized control coupled with its

native integration into Active Directory for access control.

ThinApps can be configured such that they can only be run by

members of specific Active Directory groups. The primary cost

difference for some of these additional features is the required

capital expenditure and ongoing support costs. At the time of

this writing, the cost for the ThinApp suite with 50 client

licenses and 1 year of 12x5 support is $6,050 USD . Each

additional client with the same level of support is $47.19 USD.

So an SME with 150 clients for 1 year of 12x5 support would run

$10,769 USD.

 ThinApp provides the “ability to deploy software without

modifying the host computer or making any changes to the local

operating system, file system or registry” (Introduction to

VMWare ThinApp, 2009, p. 5). Although the security implications

of the above description might seem obvious to those in the

information security field, the boon to security does not seem

to be one of the more widely touted features of these types of

applications, ThinApp included. Portability and reduced testing

costs for updated platforms seem to be the primary business

justification for these types of applications. However, we will

consider the resultant browser security advantages that this

type of solution offers.

 The choice of browser is a foregone conclusion for almost

all enterprises. Regardless of the statistics suggesting that

Firefox is becoming ever more popular, Internet Explorer

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

dominates the enterprise space. Even if an organization reached

the conclusion that they wished to deploy Firefox, most would

avoid doing so because of the lack of manageability. Further,

even if an organization intended to offer a more secure browsing

alternative by preinstalling Firefox, I would submit that,

typically, they had done their organizations a disservice with

respect to security due to having pushed a commonly exploited

and unmanaged application.

 Even if an organization decided that they could offer a

more secure browsing platform with an alternative browser, the

obstacles to managing that platform usually outweigh the

security gains to be had. However, by leveraging a tool like

ThinApp an organization could have simultaneously both more

centralized and more granular control over the ongoing

(re)configuration, maintenance, and patching of the browser and

its ancillary applications.

 ThinApp helps an organization achieve these lofty goals

through application virtualization. We will continue to use the

example of deploying an alternative browser platform, though

another interesting use case is to install Internet Explorer 8

(Weigel, 2009). With ThinApp we can create a customized

application package of Firefox that will be streamed from a

central location by the clients. We can configure this package

to include a hardened configuration, security oriented

extensions, and fully patched versions of Flash, Quicktime, and

other ancillary applications. Without application

virtualization, if an organization decided to install Firefox

they would likely preinstall this Firefox configuration to a

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

system prior to deployment, and then allow the user to keep the

browser, extensions, and ancillary applications up to date, or

else, try to push out updates as they get tested (hoping that

they install successfully). For most organizations relying on

end users to update their systems or “push and pray” patching is

an untenable solution. With ThinApp style virtualization, the

staff tasked with maintaining the Firefox configuration would

simply update the centrally located Firefox ThinApp, and then

end users would be running the updated version the next time

they ran the browser or when the application synched, depending

upon the deployment scenario (VMWare ThinApp's User Manual,

2009).

 Fundamentally, ThinApp provides with a much easier method

to manage the total browser: browser and 3rd party patches,

configuration, and plugin/extension management. Although this

is intended to be a general overview of using application

virtualization for browser security, two technical configuration

components bear further consideration. Though these settings

are not fully exposed through the standard capture GUI that

allows us to simply and quickly create a ThinApp package, they

are still easy to configure. The two settings of interest are

DirectoryIsolationMode and RemoveSandboxOnExit, and they work

together. The ThinApp user manual explains that a

DirectoryIsolationMode of Full works by, “blocking visibility to

system elements outside the virtual application package,” and

restricting “any changes to files or registry keys to the

sandbox” ensuring “that no interaction exists with the

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

environment outside the virtual application package” (VMWare

ThinApp's User Manual, P. 26, 2009). Though we have not

previously discussed the sandbox construct as it applies to

ThinApp, it can be understood as,

 the directory where all changes that the captured

application makes are stored. The next time you start the

application, those changes are incorporated from the

sandbox. When you delete the sandbox directory, the

application reverts to its captured state. (VMWare

ThinApp's User Manual, P. 127, 2009)

With this understanding of how the sandbox is considered within

ThinApp, the RemoveSandboxOnExit setting becomes immediately

obvious; it causes all contents of the sandbox to be purged when

the ThinApp is exited. The setting chosen for the

DirectoryIsolationMode dictates what information will be stored

in the sandbox. If, as was suggested earlier, the

DirectoryIsolationMode is set to Full, then all file and

registry changes would be written to the sandbox rather than the

physical. Additionally, if RemoveSandboxOnExit is turned on,

then the application would effectively delete all of the file

and registry changes that were written to the sandbox. These

settings combined serve to ensure that the user cannot have any

data persist from one running of the application to another, and

allows for the intended configuration to remain intact

regardless of the end users privileges on the system itself.

One potential issue with configuring the browser with settings

this stringent is the fact that the user will be unable to have

persistent access to files downloaded from the internet.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

 The ease with which a ThinApp alternate browser package can

be created and maintained significantly lessens a major obstacle

precluding most organizations' deployment of an alternate

browser. Alternative browser notwithstanding, the approach of

having the browser be a centralized package that is abstracted

from the target system can greatly increase the ability for an

organization to maintain the security of the entire browser with

all of its associated extensions, plugins, and ancillary

applications.

5. Conclusions

 The threat and vulnerability landscape associated with the

browser has been trending towards significantly increased risk.

Concomitant with the increased risk of running the browser is a

deluge of web enabled applications many of which require

software that extends browser functionality. The juxtaposition

of both this increased risk and increased use of the browser for

“thicker” applications creates a security quagmire.

Simultaneously securing the browser, and still allowing the

necessary functionality, presents one of the most difficult

tasks within information security.

 A better browser could rectify many of the security

challenges which currently plague us. However, perpetually

waiting for the browser to “get fixed” is typically an untenable

solution for most enterprises. Virtualization techniques offer

a relatively novel approach to achieving greater security of the

browser. This paper reviewed two distinct virtualization

approaches and an associated product. Sandboxing was reviewed

through the product Sandboxie, while we delved into application

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

virtualization through ThinApp. Sandboxing/Sandboxie offers us

the ability to prevent browser-borne attacks/malware from

affecting permanent changes to the underlying registry or file

system. Preventing permanent damage or compromise due to drive-

by-malware is very significant, as this threat has been rapidly

increasing. In VMWare's ThinApp we found a means for more

nimbly managing the entire browser landscape including the

patching and configuration of both the browser and the

associated plugins/extensions.

 While merely purchasing and deploying these technologies is

not sufficient for browser security, they each provide tools

that, when properly leveraged, can help to increase an

organization's browser security posture. At the very least most

organizations need to take seriously the risk posed to their

organizations by typical browser configurations and review what

tools and techniques might be leveraged to better protect the

browser landscape.

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

6. References

Browser Market Share. (n.d.) Retrieved January 3, 2009,

from Market Share by Net Applications Web site:

http://marketshare.hitslink.com/browser-market-share.aspx?qprid=0#

Buy VMWare ThinApp 4 Client License (n.d.). Retrieved May

24, 2009, from

http://store.vmware.com/store/vmware/en_US/DisplayProductDetailsPage/p

roductID.105855800

Buy VMWare ThinApp 4 Suite (n.d.). Retrieved May 24, 2009,

from

http://store.vmware.com/store/vmware/en_US/DisplayProductDetailsPage/p

roductID.105855000

Costoya, J. (2006, March 2). Malicious Firefox Extension:

Firestarter. Weblog retrieved from

http://blog.trendmicro.com/malicious-firefox-extensions/

Cross, M., Kapinos, S., Meer, H., Muttik, I., Palmer, S., &

Petko, P. (2007). Web Application Vulnerabilities: Detect,

Exploit, Prevent. Burlington: Syngress.

Dittner, R., & Rule, D. (2007). The Best Damn Server

Virtualization Book Period: Including Vmware, Xen, and Microsoft

Virtual Server. Burlington: Syngress.

Firekeeper. (n.d.). Firekeeper – detect and block malicious

sites. Website retrieved from http://firekeeper.mozdev.org/

Gibson, S., & Laporte, L. (2008, November 27). Security

Now! Episode 172: Sandboxie. Podcast retrieved from

http://media.GRC.com/sn/SN-172.mp3

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Grossman, J., & Hansen, R., & Petkov, P.D., & Rager, A.

(2007). XSS Attacks. Burlington: Syngress.

WOT: Web of Trust. (n.d.) Retrieved May 23, 2009, from Web

of Trust website: http://www.mywot.com/

Introduction to VMWare ThinApp, version 4.0. (2009, March

24). Retrieved May 23, 2009, from VMWare ThinApp Documentation

web site: http://www.vmware.com/support/pubs/thinapp_pubs.html

Methvin, D (2008, September 1). Google Chrome Answers The

GreenBorder Mystery. Retrieved 7:22, March 14, 2009, from

InformationWeek's Microsoft Weblog:

http://www.informationweek.com/blog/main/archives/2008/09/google_chrom

e_a.html

NoScript. (n.d.) NoScript – JavaScript/Java/Flash Blocker

for a safer Firefox experience. Website retrieved May 23, 2009,

from http://noscript.net/

Oaks, S (2001). Java Security, 2nd Edition. Sebastapol:

O'Reilly.

Provos, N., & Mavrommatis, P., & Abu Rajab, M., & Monrose,

F. (2008, July) All Your iFRAMES Point to Us. Proceedings of

the 17th USENIX Security Symposium, from

http://www.usenix.org/events/sec08/tech/full_papers/provos/provos.pdf

RequestPolicy. (n.d.) RequestPolicy – Firefox addon for

privacy and security. Website retrieved May 23, 2009, from

http://www.requestpolicy.com/

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Sandboxie – AutoDelet. (n.d.) Retrieved 06:58, May 25,

2009, from http://www.sandboxie.com/index.php?AutoDelete

Sandboxie – AutoRecover. (n.d.) Retrieved 06:58, May 25,

2009, from http://www.sandboxie.com/index.php?AutoRecover

Sandboxie – Closed File Path. (n.d.) Retrieved 06:58, May

25, 2009, from http://www.sandboxie.com/index.php?ClosedFilePath

Sandboxie – Drop Admin Rights. (n.d.) Retrieved 06:58, May

25, 2009, from http://www.sandboxie.com/index.php?DropAdminRights

Sandboxie – FAQ. (n.d.) Retrieved 06:58, May 25, 2009, from

http://www.sandboxie.com/index.php?FrequentlyAskedQuestions

Sandboxie Online Store. (n.d.) Retrieved 09:27, March 14,

2009, from

https://www.cleverbridge.com/296/?scope=checkout&cart=29388,29389,2939

0&cb_ident=655eaa38

Sandboxie – Open File Path. (n.d.) Retrieved 06:58, May 25,

2009, from http://www.sandboxie.com/index.php?OpenFilePath

Sandboxie – Quick Recovery. (n.d.) Retrieved 06:58, May 25,

2009, from http://www.sandboxie.com/index.php?QuickRecovery

Stuttard, D., & Pinto, M., (2007). Web Application Hackers

Handbook. Indianapolis: Wiley.

Top Browser Share Trend. (n.d.) Retrieved January 3, 2009,

from Market Share by Net Applications Web site:

http://marketshare.hitslink.com/browser-market-share.aspx?qprid=1

Turner, D (Ed.) (2008, April). Executive Summary. Symantec

Internet Security Threat Report, XIII, from

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-

© SANS Institute 2009, Author retains full rights.

©
 S

AN
S

In
st

itu
te

 2
00

 9

, A
ut

ho
r r

et
ai

ns
 fu

ll
rig

ht
s.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

whitepaper_exec_summary_internet_security_threat_report_xiii_04-

2008.en-us.pdf

Turner, D (Ed.) (2008, April). Symantec Global Internet

Security Threat Report. Symantec Internet Security Threat

Report, XIII, from

http://eval.symantec.com/mktginfo/enterprise/white_papers/b-

whitepaper_internet_security_threat_report_xiii_04-2008.en-us.pdf

VMWare ThinApp's User Guide (2009, March). Retrieved May

24, 2009, from http://www.vmware.com/pdf/thinapp402_manual.pdf

Vulnerability Report: Microsoft Internet Explorer 7.x. (n.d)

Retrieved January 10, 2009, from Secunia Advisories website:

http://secunia.com/advisories/product/12366/?task=statistics

Vulnerability Report: Mozilla Firefox 3.x. (n.d) Retrieved

January 10, 2009, from Secunia Advisories website:

http://secunia.com/advisories/product/19089/?task=statistics

Weigel, Paul (2009). How to ThinApp Internet Explorer 8.0.

Retrieved May 23, 2009, from Virtualization Consultant blog:

http://virtualizationconsultant.blogspot.com/2009/04/how-to-thinapp-

internet-explorer-80.html

