
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Automated Solaris Hardening: An Overview of YASSP

Jim Hurst
June 12, 2001
Version 1.2e

Introduction

A Solaris system administrator faces an immediate and daunting problem. Solaris, while a
capable and robust operating system, as delivered by Sun is inherently insecure. In their efforts
to make the system easy to install, network, and manage, Sun has included dozens of features
and services that pose security risks. This leaves the system open to a long list of vulnerabilities.

This document introduces YASSP, an automated tool for addressing Solaris vulnerabilities. The
need for such a tool is examined. Then YASSP is introduced, and the specific changes that
YASSP makes are explained. Next the nature and function of several independent packages that
are included with YASSP are briefly discussed. The document concludes with an attempt to put
YASSP and its capabilities in the larger context of security as an ongoing process. Appendices
provide a list of shell scripts and services that YASSP disables by default, and a comparison of
representative Solaris configuration files before and after the application of YASSP.

Default Security: Death by a thousand cuts

An administrator responsible for managing dozens of servers and workstations simply cannot
address all known vulnerabilities one at a time. Administrators of most sites have developed
standardized platforms tailored to the unique needs of their organization. Security is only one of
several factors that must be integrated into a “standard” local build, and it is one that is easy to
overlook when configuring complex systems.

The process of enhancing operating system security is known as hardening. While an
experienced administrator can effectively harden manually, it is vastly more efficient to do this
by script. Several hardening tools are available for Solaris, but YASSP is one of the better
known and more widely used.

Sun is by no means alone in shipping a default operating system that is not appropriate for
internet deployment “out of the box.” Many of the problems are historical to the UNIX
environment. UNIX traditionally has numerous “well-known” services running on low port
numbers that are only rarely used and present both denial-of-service and compromise
vulnerabilities. For example, an attacker could craft a packet to the chargen service on server A
that pretends to be from the echo service on server B. Chargen sends a string to echo, which
sends the string back to chargen, which sends a new string back to echo… The resulting network
traffic can quickly bottleneck network connections, and paralyze a pair of servers. The solution
is to disable these services on startup.

The problem is that unhardened UNIX is full of such weaknesses. The UNIX operating system
was designed and deployed in an age of kinder, gentler networks. The default stance of Solaris
(and most other commercial operating systems) is to allow everything, and to assume that
unwanted services will then be removed . A modern administrator cannot afford this default-
permit stance. Instead, administrators must deploy systems with a default-deny stance: nothing
is allowed by default, and permitted services are then turned on.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Enter YASSP

YASSP (Yet Another Solaris Security Package) is a public domain tool designed to address
Solaris security. YASSP has been developed by Jean Chounard of the Xerox Palo Alto Research
Center, along with an international team of Solaris experts. Chounard and his team are now
working with the SANS Institute and other collaborators to make the tool more widely available.
The YASSP version current as of this writing is V0 beta#15.

YASSP is designed to be applied to a system BEFORE it goes into production. A system with
YASSP applied meets the definition of a bastion host. All unnecessary services are removed.
Known vulnerabilities are addressed. Because YASSP makes extensive changes, often to
(justly) obscure services and files, inexperienced administrators should use caution. Deciphering
the changes YASSP makes so that critical services can be restored is not a productive use of an
administrator’s time.

A terse summary of the YASSP philosophy is as follows: YASSP will conform as closely as
possible to Sun standards and rules. It must install and un-install cleanly. It must be able to run
on a minimal install, and must be graceful and tolerant about what it finds on the existing
installation. A YASSP system will by default limit nearly all services for security, but it may be
modified to allow more services.

The YASSP Installation Process

YASSP is downloadable from http://www.yassp.org as a gzipped or compressed tarball. After
download, it is advisable to check the PGP signature, to verify the download is indeed legitimate.
To install it, unpack the tarball, which creates a directory “yassp”. The following command
(which must be run as root) will then install YASSP:

 “cd yassp ; ./install.sh”

YASSP will then ask some questions, and run its scripts.

What Happens During YASSP Installation

Rather than a single script or package, YASSP is a bundle of packages. The primary package,
SECclean, does the bulk of the reconfiguration and is discussed here. The supporting packages
include TCP wrappers, tripwire, SSH, PARCdaily, tocsin, and the GNU packages RCS and gzip.
These packages are discussed in the subsequent section.

Package SECclean applies an extensive set of changes to the system. A high-level description of
these changes can be found online at: http://www.yassp.org/internal.html. An explanation of the
changes SECclean makes at the file level follows.

A Solaris box is largely configured in the /etc directory, so it’s no surprise that YASSP does
most of its work here. The files /etc/cron.d/at.allow and /etc/cron.d/cron.allow control who is
allowed to schedule jobs on the system. YASSP creates them if they do not exist, allowing only
the root user access. The files /etc/rhosts.equiv and /etc/.rhosts are used to establish trust
relationships with other systems. YASSP creates them and makes sure they are empty, so that no
other systems are trusted by default. The file /etc/notrouter, which prevents a system from
forwarding IP packets (and thus being a potential gateway for an attacker), is created. YASSP
also adds banners that warn potential intruders the system is off-limits. These files include

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

/etc/default/telnet, /etc/issue, /etc/motd, and /etc/ftp-banner (banners warning off the
unauthorized are the cyber equivalent of no-trespassing signs, and their lack is considered bad
form as well as a legal risk). The /etc/ftpd file uses an empty banner (to prevent displaying OS
version, which might be useful in footprinting), and also changes the umask (the bit-field which
specifying file permissions) to 077, which denies all access to all users except the owner.

Several new startup files are added. /etc/yassp.conf is the YASSP configuration file. This file
sets environment values, and provides a single, central location for managing the changes that
YASSP makes. Yassp.conf is a shell script that can be sourced by other shell scripts, or
searched to retrieve specific values. The first part of yassp.conf is a set of environment values
used to manage the startup files. The SECclean package modifies other startup files to
conditionally exit if the corresponding shell variable in yassp.conf is not set to “YES”. The
default installation of YASSP sets all these variables to “NO”, thereby disabling the services.
YASSP also aggregates some groups of system variables here to allow turning on groups of
startup files (ie, services) with a single variable.

The second part of yassp.conf contains shell variables used by other SECclean scripts. These
variables control settings such as default umasks, locked out accounts, the execution of internet
services, and the degree of security applied to TCP.

The list of initialization files modified for conditional execution is extensive. All of these files
are found in the directory /etc/init.d, and an annotated version of the list is given in Appendix A.
The list is instructive, because it shows the breadth of YASSP’s approach to the UNIX security
problem: lots of service and configuration changes are applied. Many sysadmins will be
unfamiliar with some of these services, but all pose some unique security risk. Changing these
init files to shut down extraneous services is one of the most important benefits of YASSP.
Appendix B gives provides more detail as to exactly how YASSP changes these files, with code
examples of the differences between before-YASSP and after-YASSP versions of three
representative configuration files.

Inetd is a general purpose server that manages numerous network services, and is configured
from the /etc/inetd directory. Four files in /etc/inetd use yassp.conf to configure internet
services. umask.sh is used to reset the umask to 077 (or other value as set in /etc/yassp.conf)
whenever run level is changed. This is accomplished by making it the target of symbolic links
from the file S00umask.sh in /etc/rc[0123S].d The file /etc/init.d/nettune is the target of the
symbolic link /etc/rcS.d/S31nettune, which adjusts the default TCP parameters. The pair of files
/etc/init.d/inetinit and /etc/init.d/inetsvc derive from yassp.conf the value of environment variable
$SUNSTARTUP. If it is set to “YES” they do not change the original behavior, but otherwise
they configure the internet services to a minimal configuration: set TCP ISS generation, set the
default router and domain name, reset netmasks and broadcast addresses for all interfaces, run
inetd (iff so specified in yassp.conf via the RUNINETD variable) and run the named daemon if
DNS is configured.

YASSP modifies numerous Solaris configuration files by sed script. The originals of some of
these files are saved to the /yassp.bk directory before being replaced with YASSP’s more
security aware versions. The /etc/services file has numerous useful services added, including ssh
(the secure shell, discussed below) and the one-time password authentication services SecurID,
tacacs, and radius. /etc/system is modified to try to prevent and log stack-smashing attacks (also
known as buffer overflow, a vulnerability found in numerous variants across many applications)
by adding the lines “set noexec_user_stack = 1” and “set noexec_user_stack_log=1”. Blocking
this multi-headed threat in a single location is YASSP at its best (on the down side, this may

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

interfere with some compilers). /etc/rmmount.conf is altered to disallow mounting suid
programs. /etc/inetd.conf is modified by commenting out everything (including such favorites as
ftp and telnet). /etc/pam.conf is set to disallow rhosts authentication. The file /etc/passwd locks
out several system default logins. The file /etc/ftpusers details a list of users not allowed to use
FTP; YASSP extends the list if it does not exist.

Several files in /etc/default are enhanced during the YASSP install. /etc/default/sys_suspend is
set to block execution of sys-suspend to all users except root. /etc/default/login changes the
default PATH and SUPATH variables, and sets the umask. /etc/default/passwd is modified to
require at least 8 character passwords, and /etc/default/inetinit is modified to require RFC 1948
TCP sequence number generation (used to block attacks based on sequence number guessing).
Files /usr/dt/config/Xaccess and /etc/dt/config/Xaccess are altered to allow XDMCP connections
to only the local host. Finally, the files /etc/skel/local.profile and /etc/skel/local.cshrc, which set
the default login environments for Korn shell and C shell environments, respectively, are
modified to provide minimal configurations.

Remote procedure calls are configured in the file /etc/init.d/rpc. The RPC services are both
widely used and a serious security risk, so they are treated as a special case. /etc/init.d/rpc is one
of the files whose conditional execution is controlled by yassp.conf. Further, Sun’s version of
rpcbind is replaced by Wietse Venema’s version if requested.

A pair of binaries are installed outside of /etc as well. /opt/local/bin/md5 provides the md5
digital signature (checksum) program from OpenSSH. /usr/sbin/noshell provides the noshell
program from the Titan project, which is used to log attempted accesses to locked accounts.

The list of issues addressed by SECclean shows the scope of YASSP. Dozens of files are
removed, modified, or replaced, affecting every aspect of system operation. Most systems will
never require more than a handful of the removed services. But, as discussed in the next section,
some modification after the install should be expected, because the YASSP install removes all
but the most critical services. The reason FTP and Telnet are so popular is that they meet users
needs. Turning on required services that YASSP disabled by default during the install is the next
step.

Post Install

The job is not done after the YASSP install script has run. Now the administrator must add back
any services they wish to run on this system that YASSP has removed. For example, if FTP is
required on the system, the administator must edit /etc/yassp.conf and /etc/inetd.conf. A more
thorough coverage of the issues involved here is given on the YASSP website.

User accounts have been locked in file /etc/passwd. If any of these accounts are to be active,
they must be reactivated now by editing this file. Cron has been made accessible to root only,
and any old cron files have been replaced (they can be recovered from the /yassp.bk directory).
SSH is locked down so that no access is available. To grant access, hosts must be added to
hosts.allow. Inetd services have been shut down.

Supporting Roles: The Other YASSP Packages

What SECclean accomplishes is the lockdown of the system on bootup: services are removed,
access is controlled, and numerous vulnerabilities are addressed. To assist in maintaining a
secure system, YASSP brings with it a sophisticated toolkit of other packages. These packages

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

are TCP wrappers, tripwire, SSH, PARCdaily, tocsin, and the GNU packages RCS and zip. The
last pair are standard utilities to manage revision control and create compressed archives, used by
package PARCdaily.

TCP wrappers is a technique to limit access to services based on filtering incoming connections
by IP address. The YASSP version of TCP wrappers is WVtcpd (where WV stands for Wietse
Venema, the author). Solaris communicates with other computers using the TCP/IP protocol.
While some popular services like FTP and Telnet have their own ports and daemons running
continuously, many of the lesser used services are managed by the inetd daemon. This program
monitors many ports and initializes a particular service when it is needed. The idea of TCP
wrappers is that rather than an incoming connection talking directly to the controlling daemon of
a service, it first talks to the TCP wrapper daemon, who validates the connection and verifies that
it should indeed be allowed access the service being requested. Two configuration files,
hosts.allow and hosts.deny, control what hosts should be allowed to connect. TCP wrappers is
not a complete security solution, but it is one more layer of the defense-in-depth required in the
enterprise.

The Tripwire package is used for integrity checking. The version of tripwire bundled with
YASSP is a public domain tool from the Purdue Research Foundation of Purdue University.
Tripwire takes “snapshots” of an existing (and presumably, known good) system configuration,
saving it as a reference. Later, it compares the existing configuration with the reference. This is
one of the only ways to detect malware such as trojans, which makes Tripwire an invaluable part
of the security specialists’ toolkit. There is also a commercial version of tripwire available from
Tripwire, Inc.

The down side of Tripwire is that it takes care and feeding. Tuning is required to reduce the
number of false positives, that is, reports of altered files that do not represent security problems.
Also, when patches are installed, the old tripwire configuration becomes obsolete, and a new
reference must be created.

Another handy auxiliary package is OPENssh. SSH, or the secure shell, is a program for logging
into and executing commands on a remote system. It is intended as a secure replacement for
telnet, rsh, and rlogin. SSH provides encrypted communications between two endpoints, so that
the problem of running an unencrypted session across an insecure channel is addressed. SSH can
also forward X11 connections, and arbitrary TCP/IP ports.

Many users don’t realize that passwords are sent in cleartext across the internet in many
protocols, including FTP, Telnet, and rlogin. SSH addresses this problem by assuring the
passwords, if sent at all, are sent in encrypted form. OPENssh offers several methods of
authentication, but for Version 2 (which is preferred), public key using the DSA algorithm is the
first choice. If the public key authentication fails, the encrypted password is sent.

PARCdaily is a package used to set up a daily cron job that performs a set of basic maintenance
functions, including rotating log files, backing up key system files, and doing a minimal check of
filesystems and packages. PARCdaily comments out all existing lines in the file
/usr/lib/newsyslog, because it assumes management of the system log files. This is a
straightforward tool. More information about PARCdaily can be found on the YASSP site. The
source is available there for review.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

PARCdaily uses a pair of tools from the GNU toolkit, namely gzip (a compression and archiving
utility) and RCS (the revision control system, including the programs ci for checking in and co
for checking out). More on these packages can be found at http://www.gnu.org.

A recent addition to the list of YASSP packages (and one that is not currently installed by
default) is tocsin, developed by Doug Hughes of Auburn University. Tocsin is a lightweight
intrusion detection system. It puts a network interface into promiscuous mode, and monitors and
logs port scans (note that this will only see traffic to the local node on switched networks).
Scanning networks for vulnerable systems is one of the preliminaries to an attack, so tocsin adds
one more piece to the security puzzle that YASSP addresses.

Finding Expert Answers – The YASSP Mailing List

Administering Solaris is a complex process. Even experts have questions they are unable to
answer. The response of the computing community to this has been the development of forums,
mailing lists, and discussion groups where questions can be put to the community at large.
YASSP has its own mailing list, which can be joined by sending an email to the address secure-
sol-request@parc.xerox.com, with a subject line of subscribe. A public archive also exists on
The TheoryGroup website. These resources offer useful technical support to both new and
experienced users.

Fitting YASSP into the Security Process

YASSP does not exist in a vacuum. As shown above, it consists of an ensemble of interlocking
parts. SECclean rewires the system configuration to a default-deny stance, removing many
services. Tripwire and PARCdaily promote monitoring, backup, and intrusion detection. SSH
provides encrypted remote access. WVtcpd provides a degree of security to TCP connections.
Tocsin logs attempted scans. The GNU utilities ease comparison and management of logs.

None of this is enough.

YASSP converts a system with a default install into a bastion host. While this greatly enhances
the security of the system, the administrator must use the tools YASSP provides to be effective.
The tripwire and daily logs must be monitored, and suspicious results investigated. Relevant
mailing lists and websites must be monitored for new vulnerabilities, and the appropriate patches
from vendors obtained and applied. All of this takes time and effort, on an ongoing basis.

Good security is a process. YASSP can greatly aid this process by closing hordes of known
vulnerabilities, but it cannot do the work of maintaining security. There is no substitute for
administrators knowing their systems, and monitoring them closely. Effort spent in this direction
will be time well spent.

With that caveat, YASSP represents a state-of-the art approach to automated hardening. It
provides administrators a convenient and effective way to take advantage of collected security
expertise. YASSP offers Solaris users a solid foundation upon which to build and maintain
secure systems.

References

Beale, Jay “Tripwire - The Only Way to Really Know.” July 11, 2000 URL:
http://www.securityportal.com/topnews/tripwire20000711.html. (June 8, 2001).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Boran, Sean “Hardening Solaris with YASSP.” March 8, 2001 URL:
http://www.boran.com/security/sp/Solaris_hardening3.html. (May 30, 2001).

Boran, Sean “Comparison of Solaris Hardening Scripts.” November 24, 2000 URL:
http://www.boran.com/security/sp/comparison1.html. (May 30, 2001).

Chounard, Jean “YASSP – Yet Another Solaris Security Package.” Version 1.61. November 19,
2000. URL: http://www.yassp.org (June 1, 2001).

Chounard, Jean “Post installation steps.” November 15, 2000. URL: http://www.yassp.org (June
5, 2001).

Chounard, Jean “YASSP –Daily Cronjob.” Version 1.10. November 13, 2000. URL:
http://www.yassp.org/daily.html. (June 8, 2001).

Chounard, Jean “daily.” Version 1.32. November 30, 2000. URL:
http://www.yassp.org/src/PARCdaily/daily.html. (June 8, 2001).

Farmer, Dan “Titan.” URL:http://www.trouble.org/titan/lisa-paper.html. (June 14, 2001).

Frisch, Aileen. Essential System Administration. Sebastopol, California. O’Reilly &
Associates, Inc. 1995.

Gregory, Peter. Solaris Security. Upper Saddle River, New Jersey: Prentice Hall, 2000.

Hahnke, Petra “Trick Hackers With TCP Wrappers.” Performance Computing. September 1997.
URL: http://www.performancecomputing.com/archives/articles/1997/september/9709f1bi.shtml.

Lammle, Todd. Cisco Certified Network Associate. San Francisco, California. Sybex, Inc.
2000.

Nipp, Scott “Linux Security: TCP-Wrappers?” May 4, 2000. URL:
http://www.linux.com/newsitem.phtml?sid=93&aid=8518. (June 4, 2000)

OpenBSD “OpenSSH.” Version 1.111 June 1, 2001. URL: http://www.openssh.com. (June 13,
2001).

Scambray, Joel, Stuart McClure, and George Kurtz. Hacking Exposed (2nd Edition). Berkeley,
CA. McGraw-Hill. 2000.

TheoryGroup “The YASSP Development Mailing List.” URL:
http://www.theorygroup.com/Archive/YASSP/. (June 7, 2001).

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix A: Initialization Files modified for conditional execution by YASSP

This is a list of the files that are conditionally executed (that is, may or may not be run, with the
default being not), depending on the settings in /etc/yassp.conf. See the third example in
Appendix B for an illustration of how this is done.

 Filename Function

apache apache http server configuration
asppp managers asynchronous point-to-point protocol (PPP)
autofs managing automount daemons
autoinstall install script that is part of the Jumpstart procedure
cacheos configure the Cache file system
cacheos.finish “
cachefs.daemon “
cachefs.root “
devfsadm configuration of the /dev directory
devlinks configuration of the /dev directory
dhcp configuration of the DHCP server
dhcpagent configuration of the DHCP client daemon
dtlogin auto starts dtlogin window after a multi-user boot
dmi Desktop Management Interface service provider config
init.dmi DMI service provider config (Solaris 8)
inetinit manage phase two of TCP startup configuration
inetsvc manage phase three of TCP startup/configuration
ldap.client configuration and startup of ldap daemon
llc2 controls execution of llc2 software interface to physical LAN
lp manages the lp print service
ncakmod configuration of Network Cache and Accelerator Kernel module
ncalogd configuration of Network Cache and Accelerator logging
networks defines known network numbers
nfs.client managing client side of network file system remote mount capabilities
nfs.server managing nfs remote disk mount capabilities
nscd managing the name service cache daemon
power configuration of the power management system
PRESERVE specifies location of files being edited to /usr/preserve
rpc manages remote procedure calls
slpd configuration of Service Location Protocol Daemon
snmpdx configure SNMP master agent
init.snmpdx SNMP master agent configuration
spc manages spooling as part of the print subsystem
sysid.sys system config script invoking sysidsys, sysidroot, and sysidpm
sysid.net final network config script invoking sysidnet
xntpd managing network time protocol service daemon
utmpd the utmp daemon clean up after terminated processes
uucp manages the Unix-to-Unix copy protocol
volmgt managing volume management, that is, disks, tapes & other peripherals
webstart multiple CD Install reboot script
init.webm CIM boot manager

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Appendix B: Comparison of Representative Files Before and After YASSP installation

This appendix compare certain Solaris configuration files before and after the YASSP
installation. YASSP uses a disciplined and predictable approach to modifying files. When files
are saved, they are stored in the /yassp.bk/Before_<timestamp> directory, where <timestamp> is
a string representing the time when YASSP was installed, for example: “2001.05.24-16.37.09”.

The comparison shown use the output of the Solaris “diff” utility. Diff takes two filenames as
arguments, and returns the difference of the two files. In the list of differences, lines preceded by
the “<” symbol are from the first file (in our case, the after-YASSP file), while line preceded by
the “>” symbol are from the second file (in our case, the pre-YASSP file).

The first comparison is /etc/password. This file controls user accounts, and specifies the
account’s ability to log in. YASSP applies one change: for all accounts besides root, it makes
the default shell /usr/sbin/noshell. This blocks the account from logging in, and also attempts to
ensure that login attempts by the account are written to the logfiles.

diff passwd /yassp.bk/B*/etc
1,12c1,12
< root:x:0:1:"Root at sapapp3":/:/bin/tcsh
< daemon:x:1:1::/:/usr/sbin/noshell
< bin:x:2:2::/usr/bin:/usr/sbin/noshell
< sys:x:3:3::/:/usr/sbin/noshell
< adm:x:4:4:Admin:/var/adm:/usr/sbin/noshell
< lp:x:71:8:Line Printer Admin:/usr/spool/lp:/usr/sbin/noshell
< uucp:x:5:5:uucp Admin:/usr/lib/uucp:/usr/sbin/noshell
< nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/sbin/noshell
< listen:x:37:4:Network Admin:/usr/net/nls:/usr/sbin/noshell
< nobody:x:60001:60001:Nobody:/:/usr/sbin/noshell
< noaccess:x:60002:60002:No Access User:/:/usr/sbin/noshell
< nobody4:x:65534:65534:SunOS 4.x Nobody:/:/usr/sbin/noshell

> root:x:0:1:Super-User:/:/bin/tcsh
> daemon:x:1:1::/:
> bin:x:2:2::/usr/bin:
> sys:x:3:3::/:
> adm:x:4:4:Admin:/var/adm:
> lp:x:71:8:Line Printer Admin:/usr/spool/lp:
> uucp:x:5:5:uucp Admin:/usr/lib/uucp:
> nuucp:x:9:9:uucp Admin:/var/spool/uucppublic:/usr/lib/uucp/uucico
> listen:x:37:4:Network Admin:/usr/net/nls:
> nobody:x:60001:60001:Nobody:/:
> noaccess:x:60002:60002:No Access User:/:
> nobody4:x:65534:65534:SunOS 4.x Nobody:/:

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

The second comparison is of the file motd, the message of the day, which users see upon
login. YASSP changes the motd to a virtual “no trespassing” sign. It also removes
information that might be useful to an attacker in profiling the system.

diff motd /yassp.bk/B*/etc
1,3c1
<
< This computer system for authorized use only
<

> Sun Microsystems Inc. SunOS 5.8 Generic February 2000

The final comparison show a typical “conditional execution” change from YASSP. This
is how YASSP shuts down services. If the yassp.conf file doesn’t contain a value of
“YES” for the environment variable the shell script searches for, the shell script exits
before starting its designated service.

The third comparison is of the file nfs.server, but the results would be very similar for
most, if not all, of the files listed in Appendix A:

2,10d1
< # SECclean START
< # ***
< # This shell script was modified by SECclean to start only if
< # the shell variable NFSSERVER is set to 'YES' in /etc/yassp.conf
< # ***
< if [-f /etc/yassp.conf] ; then
< . /etc/yassp.conf
< fi
< # SECclean END
23,27d13
< # SECclean START
< if ["X${NFSSERVER}" != "XYES"] ; then
< exit 0
< fi
< # SECclean END

First, the shell script executes script yassp.conf if it exists. Then it checks the value of
the variable NFSSERVER. If it is not equal to YES, then shell script exits before
invoking whatever services the script controls.

