GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

Perl CGI Security

I ntroduction

Larry Wall developed Perl in 1986 and relessed it in 1987. It was originally
developed as ascripting language for Unix system administrators. Larry said he
“developed Ferl -- an interpreted data reduction language -- to solve aproblemtha awk
could not handle (Kim).” It was acombination of awk, sed, and sh, with elements of c,
csh, Pascal and Basic. A ccording to the original man page, “ Perl is ainterpreted
language optimized for scanning arbitrary text files, extracting informetion fromthose
text files, and printing reports based on tha information. It isalso agood language for
many system management tasks (Wall).” Perl has become thetool of choice for other
tasks as well, such as rgpid prototyping and even full fledged gpplication development.

Perl provides the system administrator with an extension of the shell programming
interface for UNIX that allows himto accomplish tasks that would otherwise betoo time
consuming to code in other languages. With the addition of Perl32 for Windows, NT
system administraors now have some of the sametools available to UNIX
administraiors. Typical tasks that are coded in Perl include, adding new users, checking
systemlogs, network maintenance and backup, and file system administration.

Perl was adopted as an early executable language for HTM L pages on the web to
provide interectivity in web pages, such as datacollection and verification. Theproblem
with Perl as a CGl language is similar to other languages tha interface with the base
operding systemin that they open the operaing systemto uninvited intrusion. Perl in
itself is not an insecure language. It is its ease of use by novice programmers and the
availability of “ canned” scripts on the web that open vulnerabilities to the operating
system.

Perl Security

Most beginning Perl programmers and some experienced ones do not realize the
damegethat an intruder can do using their programs. Hackers have used unsecured Perl
prograns to steal valuable customer information, credit card numbers and identities.
While most programmers assume the operating systemwill protect their programs, they
would be wrong. The esseof locating Perl programs on the server is what lures intruders.
Typically these programs have full system privileges. This makes them a prime target for
the cracker tha wants to gain full access to aserver. The SANS Ingtitute lists CG and
Perl vulnerabilities as one of the top ten critical Internet security risks (SANS).

Both Microsoft Windows and UNIX, including all of its variants, have some
vulnerability when used as web servers. Theunrestricted and ingenuous use of Perl asa
CGlI language can increase these vulnerabilities many times. Not all operating systens
and web host gpplications have the same vulnerabilities, nor can they besimilarly
protected.

Page 1 of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

Security Rulesfor Perl Programmers

There are some basic tenets that can be used to protect anetwork that is using Perl as
oneof its CA programrs. While these will not protect the nework froman idiot
programmer they will insuretha theall-important “duediligence’ is accomplished.

Perl ProgrammersRule#1: Know your code!

In general Perl programmers should be skeptical of scriptsthat they download from
the web. The power of Rerl is its ubiquitous use asa CA language. This is also its
failing froma security standpoint. Rerl programmers are efficient opportunists. They
will use another programmer’s code to solvetheir problem, if it is available. The Perl
programming community makes this very easy to accomplish. Sample code is available
from many sources, but notably the Comprehensive Perl Archive Network or CPAN,
WWW.Cpan.org.

The programs obtained a these sites, while developed to solve aparticular problem,
may contain bugs or in extreme cases errors tha can expose a network to unscrupulous
intruders. It is extremely important that Perl programmers read the source code. They
should know exactly what it does and why it does it. This alone will protect anetwork
frommost attacks.

Perl Programmers Rule#2: Remove all sample code from the server.

Operating systems and web hosting applications ship with sample prograns to get a
web site up and running on the server as soon as possible. Most systemadministrators
know nothing about these sample programs and leave them on their servers for their
programmersto utilize. This isunwise and very insecure. It is imperaivetha thesystem
administraor remove all sample programs fromtheserver. Moving themto another
server is fine, as long as they do not remain on the system path. At the same time, all
documentation should be removed fromthe web server. This documentation can itself
contain sample code.

A Perl savvy administrator will look for sanmple code in the following locaions on an
[1S Server: c\inetpub\iissamples, c\inetpub\iissamples\sdk,cinetpub\A dminScripts. A
UNIX administrator will find similar scripts under /bin/perl/lib/samples on some systens,
but this depends on who installed it and what version of Perl is installed. Heshould read
the documentation, find out wherethe samplecode is located and remove it fromthe
server, along with the documentation.

Perl Programmers Rule #3: Remove all unused code from the server.

In addition to removing all sample code, the programmer or system administrator
should remove all Perl scripts tha areno longer used fromtheserver. Thesystem
administrator should usethe web server log files to determine what prograns are run
fromtheserver. In UNIX he can look a thehttpd.conf file to find the path to the cgi
directories. Takenotethat all cgi files do not end in .cgi. They can haveother

Page 2 of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

extensions, such as pl (for Perl). Look in the pah environment statements to make sure
that none of the system administration scripts are deleted.

Once again, this goes back to the old saying, “ know your system.” The programmer
should know what scripts are needed to operate the web server. Old scripts should be
eliminated, or at lesst stored on another server, tha is inaccessible fromthe web. The
theory here is to have the minimum number of scripts on the systemso that it can
performit operation.

Perl ProgrammersRule#4: Do not depend on Perl’s built-in security to
keep your code secure.

The Perl documentation itself lulls abeginning Perl programmer into believing that
hecannat write insecure code. An excerpt fromthe Rerl documentation says “ Perl is
designed to make it easy to program securely even when running with extraprivileges,
like setuid or setgid prograns. Unlike most command line shells, which arebased on
multiple substitution passes on each line of the script, Perl uses a more conventional
evaluation scheme with fewer hidden snags. Additionally, becausethe language has more
built-in functionality, it can rely less upon extemal (and possibly untrustworthy)
prograns to accormplish its purposes (CPAN).”

The device tha Perl uses to protect the programmer frominadvertently executing
insecurecodeiscalled “taint mode” This is abuilt-in function of the Perl interpreter
that checks the Perl programfor aset of security violations, such as verifying that path
directories are not writegble by anyone but theprogram. In addition, data that is
identified as“tainted” may not be used in acommand tha calls asub-shell, orin a
command that changes afile or directory. But there are exceptions.

The exceptions are what catch the unwary programmers and system administrators.
First, “taint mode’ has to be explicitly requested on the command line with a—T option
or the UNIX permission bit, setuid, set to 04000, or the setgid bit set to 02000. Only
these options will cause “taint mode’ to bestarted. Onceit is started it continues forthe
remainder of the script.

After questioning programmers and system administrators froma large web hosting
company in my area, | found tha the programmers knew nothing of “taint mode” because
they did not makethe programs executable on the web server, the systemadministrator
did. Thesystemadministrator knew nothing about Rerl programming so he never set the
setuid, or setgid bitsto automatically initiate “taint mode.” Perl’s automatic, built-in
security was unknowingly circumvented by two of the most common humen traits, lack
of communicaion and failure to read the documentation.

What it also states, later in Perl the document, is that a Perl programmer can
purposely execute insecure code, even with “taint mode’ initiated. If the Perl programis
written so that is passes alist of argumentsto either sysemor exec, they are not checked
for “taintedness.” The same goplies to print and syswrite.

The following are examples of tainted and insecure code taken fromthe Perl

documentation:
Sarg = shift; # Sarg is tainted
Shid = Sarg, 'bar'; # Shid is also tainted
Sline = <>; # Tainted

Page 3of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

© SANS Institute 2000 - 2002

GIA C Security Essentials Certification (GSEC)
Practical Assignment

$line = <STDIN>;

open FOO, "/home/me/bar" or die $!;
Sline = <FO0O>;

Spath = SENV{'PATH'};

Sdata = 'abc';

system "echo S$arg";

system "/bin/echo", $arg;

system "echo $hid";

system "echo $data";

Spath = SENV{'PATH'};

SENV{'PATH'} = '/bin:/usr/bin';
delete @ENV{'IFS', 'CDPATH', 'ENV',

Spath = SENV{'PATH'};
system "echo $data";

open (FOO,
open (FOO,

LD $argn) ;
H> $arg");

open (FOO, "echo $argl") ;
open (FOO,"-1")
or exec 'echo', Sarg;

Sshout = “echo S$Sarg’;

unlink S$data,
umask S$arg;

Sarg;

exec "echo $Sarg";

exec "echo", S$arg;
shell)

exec "sh", '-c', Sarg;
@files

similar
@files

similar

<*.c>;

)
= glob('*.c");
)

H o

H o H

Preston D. Gillmore

Also tainted

Still tainted
Tainted, but see below
Not tainted

Insecure
Secure (doesn't use sh)
Insecure
Insecure until PATH set

Spath now tainted

'BASH _ENV'};

Spath now NOT tainted
Is secure now!

OK - read-only file

Not OK - trying to write
Not OK, but...

OK

Insecure, $shout now tainted
Insecure

Insecure

Insecure

Secure (doesn't use the
Considered secure, alas!
insecure (uses readdir () or
insecure (uses readdir () or

As alast waming, the same Perl documentation cautionsthis for the programmer and
systemadministraor. “Thetainting mechanismis intended to prevent stupid mistakes,
not to remove the nead for thought. Need | say more?

Perl Programmers Rule#5: Sanitize your data!

The data that is sent to a Perl program froman Intemet connection is completely out
of the programmer’s control. This is true unless the Perl programmer takes the
precaution of laundering that datathrough some simple Perl script. Most programmers
think that removal of some well-known meta-characters fromthe data and replacing them
with underscores is a common way of accomplishing thistask. They would be wrong.

Page 4 of 7

As part of GIAC practical repository.

Author retains full rights.

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

“The problemwith this goproach istha it requires the programmer to predict all
possible inputs that could possibly be misused. If the user uses input not predicted by the
programmer, then there is the passibility tha the script may be used in a menner not
intended by the programmer (CERT).”

A better way to accomplish this, according to CERT, is to “define a list of acoeptable
characters and replace those not on the list with underscores. This benefits the
programmer by retuming control of the received datato him. It allows data, which he
specifically defines, as safe. CERT furnishes asample Perl code snippét to demonstrate

the concept.
#!/usr/local/bin/perl
$ = Suser data = SENV{'QUERY STRING'}; # Get the data
print "$user datal\n";
SOK_CHARS='-a-zA-7Z0-9 .@'; # A restrictive list, which

should be modified to match
an appropriate RFC, for
example.

s/[~"$OK_CHARS]/ /go;

Suser data = $_;

print "$user data\n";

exit (0);

This concept should not only be goplied to data received fromthe intemet, but
should include file access which is received fromthe internet. Perl uses special
characters such as > and | which should be check for in file names. As mentioned in#4
above, the eval function is especially vulnerable to meta-character attack, since the Ferl
interpreter does nat filter it. CERT is not theonly one with warnings about this problem

CIAC also wams that, “To prevent CG script compromise, avoid passing remote
user input directly to command interpreters such as Unix shells, other interpreters such as
Perl and AWK, or prograns tha allow commands to be embedded in outgoing messages,
such &s '/usr/ucb/mail’. If userinput must passto these types of programs, filter the
input for potentially dangerous characters before it is passad along. These characters
includethe period (.), comma(,), slash (/), semi-colon (;), tilde (~), and exclamation point
M. (CAAQ)”

Perl ProgrammersRule#6: Know your Web Server Application

Programs that instantiate a web server are notorious for creating security leaks.
While the developers of these programs attempt to patch them as fast asthe leaks are
found, it is up to the system administrators to know which patches to goply. Maost system
administrators, and | speak from experience; do not know what patches are needed to
securetheir server, let alone the CA programsthat run on theserver. It isobvious that
some help is needed to alleviate the confusion.

Help is available for servers tha support CG.A system administrator needs to look
at the Network Security Library site, http:/secinf.net/info/wwwi/cqgi-bugshtm He also,
needsto be aware of theMicrosoft’s Intemet Information Server 4.0 Security Checklist,
found & http://www.microsoft.comvtechnet/security/iischk.asp.

Page 5of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

Wha itens are found in these security sites? Here is agood example. As was noted
earlier, intruders want to find the location of the servers Perl scripts, so that they can run
sample scripts or run scripts of their own. Early versions of 11S 4 could return the
location of the Perl directory if anon-existent file was requested. This can be essily fixed
by replecing the perl.exe with the perl.dll (M ost Comprehensive List).

Conclusion

As with any network security issue there is no magic bullet. Thereisonly the
persistence and determinaion of the network administrators and programmers, working
in concert, to keep the systemsecure. The list of rules provided aove is a good start to
securing Perl on anetwork server. Sincethe web server and the network area dynamic,
growing things, there must be continued checking and vigilance.

Page 6 of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

GIA C Security Essentials Certification (GSECQ Preston D. Gillmore
Practical Assignment

Bibliagr aphy

CERT® Coordination Center. “How To Remove Meta-characters From User-SQupplied
DataIn Cd Scripts:* 2 May 2001.
http://www.cert org/tech_tips/cgi_metacharacters.html

CIAC, Computer Incident Advisory Capability, U.S. Dept. of Energy. “ Securing Internet
Information Servers,” CIA C-2308 R.3, UCRL-M A -118453, December, 1994
(Revisad August, 2000). 9 A pril 2001.
<http://www.ciec.org/ ciac/documents/ciac2308.htmi#6. 7>

Herrmann, E. Teach Yourself CA Programming with Perl 5in aweek. Sams.net
Publishing. 1997.

Kim, EE “A Conversation with Larry Wall.” Dr. Dobb’s Journal. February 1988. 12
April 2001. http://www.ddj.convarticles/1998/9802/9802a/9802a.htm,

Microsoft, Microsoft Internet Information Server 4.0 Security Checklist, March 15, 2000.
11 May 2001. http://www.micrasoft com/technet/security/iischk.asp

Most Comprehensive List of CA & httpd Bugs, The. compiled by lirik@nanko.ru
31.Mar 1999. 14 May 2001. http://secinf.net/info/mww/ cgi-bugs.htm

Roth, D. Win32 Perl Scripting: The Administrators Handbook. New Riders, November
2000. pg.

SANS Institute, The. “How To Himinate The Ten Most Critical

Internet Security Threas.” Version 1.32. January 18, 2001. 12 May 2001.
http://www .sans.org/topten.htm

Wall, L. “Perl.” Internet Software Consortium. Jan 31 1988. 28 A pril 2001.
http://sources.isc.org/devel/lang/perl.txt,

Page 7 of 7

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

