
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Sudo and SSH: A Scheme for Controlling Administrator
Privileges and System Account Access
By Liam Forbes
GSEC Practical Assignment Ver 1.2e
June 11, 2001

1. Introduction
In an environment with many UNIX systems, several system administrators, and a
plethora of users, it is easy to lose track of who has what privileges and access to system
accounts. Controlling privilege allocation and system account access can become a
management nightmare, or a gaping security hole. Handing out passwords to system
accounts provides opportunity for those accounts to become backdoors into the systems.
Having those account passwords on the system are opportunities for crackers to practice
their craft. There are two tools that can improve site security, and simplify security
management, sudo and SSH.

"Sudo (superuser do) allows a system administrator to give certain users (or groups of
users) the ability to run some (or all) commands as root or another user while logging the
commands and arguments." (10) The ability to parcel out privileged commands and not
reveal system passwords greatly reduces the chance that an unauthorized user will learn
those passwords. An administrator can go one step further and eliminate system
passwords, including root's, on non-server systems (and probably a few servers as well).
Then, even a cracker cannot learn a system password, because there is no encrypted
string to crack.

In a networked environment, an administrator can securely execute commands across the
network as various system accounts from a single central, trusted host. Using a one-way,
encrypted, trust relationship from an administrative server to a client workstation or
server, administrators can execute privileged commands without exposing any
passwords. Again, going one step further, by using sudo and SSH's alternate
authentication methods, an administrator can remove UNIX passwords from most of the
system accounts across the entire network if they so desire.

2. Using Sudo to Assign Privileges and Eliminate System Account
Passwords
In multi-user mode, sudo replaces su when administrators need to work as root, or other
system accounts. This is especially useful in environments that use NIS and cannot use
shadow password files. Sudo performs several actions before executing a command. It
logs the command and arguments to a file, syslog, or both. It resets the PATH variable to
a predefined setting. It eliminates other potentially dangerous variables from the
environment (IFS, ENV, BASH_ENV, LD_*, & RLD_*). It checks that the user is in the
sudoers file, and warns the administrators if he or she is not. The user is prompted for
their password, or other authentication mechanism defined at compile time. If
successfully authenticated, the user's effective and real UID and GID are set to 0, or
another account ID if the -u option is used.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Many of these actions can be modified by compile time options. For example the
authentication mechanism, the logging facility, the environment variables, and the PATH
setting are all fixed when sudo is compiled. These compile time options control the
behavior of sudo. The 'sudoers' file, controls the privileges.

Configuring Sudo
The sudo configuration file, /etc/sudoers, does not configure how sudo behaves, it only
configures the privileges assigned to users. Via the 'sudoers' file, an administrator defines
which users can use sudo, which commands they can execute, and where (which systems)
the commands can be executed. Figure 1 provides an example sudoers file.

/usr/local/etc/sudoers
only edit this file with visudo

User Aliases
User_AliasADMINS=evert,applebee
User_AliasSTUDENTS=bob,mary,will
User_AliasDATABASE=eli,avery

Host Aliases
Host_AliasLAB=wkstn1,wkstn2,wkstn3
Host_AliasDATABASE=database.univ.edu

Runas Aliases
Runas_Alias DATABASE=dbmgr

Command Aliases
Cmnd_AliasDATABASE=/usr/local/db/bin
Cmnd_AliasREBOOT=/sbin/reboot, \

/sbin/shutdown -r *
Cmnd_AliasPRINTER=/usr/sbin/lpc,/usr/bin/lprm
Cmnd_AliasVIEWING=/bin/cat, /bin/more, \
 /usr/bin/head, /usr/bin/tail, \
 /bin/grep, /usr/bin/diff

User Privilege Specification
ADMINS ALL=(ALL) ALL, NOPASSWD: VIEWING
STUDENTS LAB=REBOOT,PRINTER
DATABASE DATABASE=(DATABASE) DATABASE

Figure 1. A sample sudoers file

There are several sections to the sudoers file. Most of the sections define aliases which
are then used to define the user privileges. All of the aliases are comma separated lists.
When the lists get long, a "\" indicates that the list continues on the next line. Aliases are
used to group items (hostnames, usernames, commands) into symbols that will be used in

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

the final section. Wildcard characters can be used to simplify the items into patterns. It
is important to be as specific as possible though, so that privileges are not accidentally
assigned to unauthorized users.

User Aliases are lists of users who have sudo privileges. By grouping users into
categories, an administrator can assign only those privileges necessary for the user to do
their work. The sample file shows three types of users, administrators who require full
root access, student lab managers who only require the ability to reboot systems and
manage printers, and database users who manage a network database.

Host Aliases allow the administrator to assign privileges only on certain systems. A host
alias can be a list of hosts, a list of netgroups, or a combination of the two. These aliases
allow the administrator to group hosts based on location, or function. In the sample file,
the LAB alias lists the client workstations and the DABASE alias lists a specific system,
the database server.

Runas Aliases allow the administrator to restrict who a command can be executed as. By
default, sudo commands are executed as root. However, it is also possible to execute the
commands as other system accounts, or even other users. The '-u' option to sudo
specifies what UID and GID are used to execute the command, but only if the user has
been authorized in the sudoers file to execute the command as that account. The only
runas alias in the sample file allows authorized users to execute commands as the dbmgr
account.

Command Aliases define the commands that will be assigned to users. Pattern matching
in this section is especially important. If a pattern is written too losely, then the user may
be able to perform unauthorized functions. If a pattern is too strict, the user may not
receive the intended privileges. By specifying just the command name, a user can use
any of the arguments that go with that command. However, if the entire command line is
specified, then only that function can be used. Do not assign shells or commands that can
invoke a shell. If a user can get to a shell from a sudo command, then they have full root
privileges, with no restrictions or logging. For example, vi should not be a sudo
command because the user can break out to a shell using the ":!" key sequence.

The sample file has four command aliases. The DATABASE alias is a directory
containing the commands used to manage a database. As long as an executable is located
in that directory, it can be run with sudo. The REBOOT alias has two commands. The
second command, shutdown -r *, is a pattern allowing the user to specify when the
shutdown should occur. In order to allow only an immediate shutdown, the "*" could be
replaced with the string "now". The PRINTER and VIEWING aliases are just command
lists.

The User Privilege Specification combines all the aliases together to define "who gets
what privileges on which hosts."(8) Here, all of the aliases are used to establish the users'
root and system privileges. The syntax of a privilege specification is:
user host = [(runas)] [NOPASSWD:] [op]cmnd [: host = …]

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

This is a little difficult to read, however it's really just a build up of the aliases and a few
extra pieces.

The "user" is either a username, or a user alias. The "host" is a hostname, or a host alias.
The "runas" is a username, or a runas alias. The "cmnd" is a command, a list of
commands, or a command alias. A single specification can define the user privileges
available on different system groups by separating them with a ":".

The sample file has three specifications. The first gives the ADMINS group permission
to execute any command as root. The need for su, and logging into a system as root, has
been removed by this line. The specification goes a little further and gives the ADMINS
permission to execute a subset of commands, the VIEWING commands, without having
to authenticate themselves. This specification is the most permissive, therefore the
ADMINS alias should be as small as possible with only those people who really need full
root access.

The second and third specifications assign a very limited set of privileges to the students
and the database managers. The STUDENTS group is given the permission to execute a
system reboot. The DATABASE group is given the permission to execute any command
in the /usr/local/db/bin as the dbmgr account. As seen in the DATABASE example, the
same name can be used repeatedly for different aliases.

It is very important that the sudoers file not contain any mistakes. If it does, then sudo
will not work for anyone. To avoid this, the sudo package comes with the command
visudo, a tool for editing the sudoers file. This command scans the sudoers for any
mistakes after editing is finished. If any mistakes are detected, it prompts the editor to fix
them before finishing the edit session. The command, visudo, itself needs to be
executed with root permissions, i.e. sudo, and invokes a vi editing session. Therefore
this permission should be restricted to just those people with full root access.

Using Sudo
A user with sudo privileges enters commands from their own account, but prefixes them
with the command sudo. Sudo prompts for the user's password and then executes the
command as root, or some other user. Example: % sudo rm /core
Commands entered this way are logged, either to a separate sudo log, or to the
syslog(8) daemon. The administrator can control which commands the user can
execute, and the ownership under which they are executed. For example an administrator
could give a user permission to execute a command as user 'adm'. Example: % sudo -
u adm acctcom

After all of the privileges are assigned, and tested, the administrator can remove the
password from the root account on most, or all of the systems where sudo is installed.
Replacing the encrypted string with an asterisks, but leaving a valid home directory and
shell, means the root account can no longer be logged into from the network or have its
password cracked. There is no danger that the root password will be misplaced, misused,

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

given to the wrong person, or passed over the network, because the root password does
not exist.

Once the root password is removed, all access to root is via sudo commands. Each
command is logged which creates an audit trail of actions performed as root. For
example, if one of the students rebooted the system, the following would appear in
syslog:

May 2 07:16:57 5E:wkstn1 sudo: mary : TTY=ttyq9 ;
PWD=/home/studentadmin/mary ; USER=root ;
COMMAND=/sbin/reboot

There are times when multiple commands have to be executed at once. Sudo does not
maintain any state information from command to command, other than the last successful
authentication time. Except for specific envionment settings, all other state information
is taken from the user's own environment. For example the current working directory,
and the display setting are based upon the user's settings. Multiple commands can be
placed in double quotes and separated by semi-colons. This allows environment settings
to be reset as part of a single sudo command. For example:
% sudo "setenv DISPLAY localhost.net:0.0; xclock"

If even the quotes are too restricting, or too many metacharacters have to be escaped,
then sudo can be used to execute the su command. Since this means root actions will not
be logge, it is a good idea to add some kind of explanation to the logs with the echo
command. For example:
% sudo echo "Becoming root to restore backups from library"
% sudo su -

For administrators that are not ready to completely remove the root password, or for
production servers that need a root password to enter single user mode, the root password
can be stored in a safe place and no longer needs be circulated.

3. Using Sudo With SSH to Eliminate System Account Passwords On
the Network
Configuring SSH
For administrators who still have to access client workstation's root account over the
network though, there is a good tool for doing so - SSH. SSH has the obvious benefit of
encrypting everything that passes over the network. There are several papers, and a
book, on setting up SSH in general. The List of References in Appendix A lists some of
those writings. Please refer to them for how to compile and configure SSH in general.

SSH also has "nonpassword authentication schemes"(8) which are more secure than
standard UNIX passwords. Using symmetric AND asymmetric encryption schemes, an
administrator can create a one-way trust relationship between system accounts on a
central, trusted administrative server and the equivalent accounts on all the client

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

systems. A one-way relationship is preferable so that compromising the client system
does not allow access back to the administrative server.

If SSH is only going to be used for administrative purposes, then configuration is simple.
However, if SSH will be used for regular user logins, and system administration, it is
better to run two instances of sshd, one for users, and one for administration. Seperating
the use of ssh allows finer grained control fo the SSH daemon configuration. Figure 2
shows two examples of an sshd configuration file. One file is for SSH 1.2.27, the other is
for OpenSSH 2.2.0.

/etc/sshd-config (1.2.27)
daemon configuration
Port 30
ListenAddress 0.0.0.0
HostKey /etc/sshhostkey
RandomSeed /etc/sshseed
ServerKeyBits 1024
LoginGraceTime 180
KeyRegenerationInterval 3600
X11Forwarding no
KeepAlive yes
PrintMotd yes
SyslogFacility DAEMON
FascistLogging yes
QuiteMode no
StrictModes yes
Umask 0077

authentication
PasswordAuthentication no
PermitEmptyPassword no
RhostsAuthentication no
IgnoreRhosts yes
RSAAuthentication yes
RhostsRSAAuthentication yes

permissions
AllowUsers root dbmgr
AllowHosts admin.u.edu
PermitRootLogin yes

/etc/sshd-config (2.2.0)
daemon configuration
Port 30
ListenAddress 0.0.0.0
HostKey /etc/sshhostkey

ServerKeyBits 1024
LoginGraceTime 180
KeyRegenerationInterval 3600
X11Forwarding no
KeepAlive yes
PrintMotd yes
SyslogFacility DAEMON

StrictModes yes

authentication
PasswordAuthentication no
PermitEmptyPassword no
RhostsAuthentication no
IgnoreRhosts yes
RSAAuthentication yes
RhostsRSAAuthentication yes

permissions
AllowUsers root dbmgr

PermitRootLogin

 forced-commands-only
Figure 2. SSH 1.2.27 (left column) and OpenSSH
2.2.0 (right column) sshd-config file

First an administrator has to create a set of keys for the central, trusted, administrative
server. Then a set of keys has to be created for each system account that will be accessed
from the administrative server. If commands will be executed from the crontab, across
the network, then no passphrase should be associated with the keys. Otherwise, each
account should have it's own unique passphrase. Once the keys are created, they have to
be securely distributed to each system.

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Once the keys are created, the daemon configuration file (figure 2) has to be copied to
each system and the daemon started. The daemon listens on port 30, and will only accept
connections by root or dbmgr. This corresponds to the accounts that users can execute
sudo commands as (the runas aliases). Password login is disallowed, as is standard R-
services authentication. However, public/private key logins are enabled along with RSA
host authentication. By disabling the standard password login, but using RSA keys with
no passphrase, the accounts can be logged into automatically by scripts running on the
administrative server.

Using Sudo With SSH
Once SSH is configured, and privileges have been assigned on the administrative server,
executing commands across the network, is just like issuing commands locally with sudo.
The only change is the invocation of ssh to a workstation. Example:
% sudo ssh wkstn1 /sbin/reboot
This also works when connecting to other system accounts. Example:
% sudo -u dbmgr ssh database /usr/local/db/bin/restart

If the accounts have passphrases, or even passwords, SSH ensures they are not passed
over the network in the clear. At the same time, sudo logs the entire command. The
combination of the two tools provides a secure system for the centralized management of
many hosts.

Conclusion
When su and the standard R-services were developed, they were intended for simple and
efficient system administration and network connectivity. Over time, those programs
worked well, but they are limited and insecure. Now, open source tools that extend the
features of the original tools, and secure them are freely available. Provided they are
configured correctly, sudo and SSH help system administrators get their work done,
without giving away the "keys to the kingdom."

©
 S

A
N

S
In

st
itu

te
 2

00
0

- 2
00

2,
 A

ut
ho

r r
et

ai
ns

 fu
ll

ri
gh

ts
.

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

 Appendix A - References
1. Barrett, Daniel and Richard Silverman. SSH, The Secure Shell: The Definitive Guide,

Sebastopol, CA: O'Reilly & Associates, Inc., 2001.
2. Bhosle, Chandrashekhar. "Psudo root!", FreeOS.com, 14 March 2001. URL:

http://www.freeos.com/articles/3799 (11 June 2001).
3. Crawford, Chuck. " SSH, Secure Shell", SANS GIAC Security Essentials Practicals,

12 October, 2000. URL: http://www.sans.org/infosecFAQ/authentic/SSH.htm (11
June 2001).

4. "FreeSSH", URL: http://www.freessh.org (11 June 2001).
5. Haszlakiewicz, Eric and Thor Lancelot Simon. "FreSSH", FreSSH.org, 15 February

2001. URL: http://www.fressh.org (11 June 2001).
6. Komarnitsky, Alek. "Sudo A Method of Controlling/Auditing Root Access; How it is

used at a Large Aerospace Company", October 1998. URL:
http://www.komar.org/pres/sudo (11 June 2001).

7. Koppel, Paul. "Using SSH2 for UNIX and Windows", SANS GIAC Security
Essentials Practicals, 25 November, 2000. URL:
http://www.sans.org/infosecFAQ/encryption/SSH2.htm (11 June 2001).

8. Mann, Scott and Ellen Mitchell. Linux System Security, The Administrator's Guide to
Open Source Security Tools, Upper Saddle River, NJ : Prentice Hall PTR, 2000, pp
173 - 192, 257 - 312.

9. "OpenSSH", OpenBSD Project, 8 April 2001, URL: http://www.openssh.com (11 June
2001)

10. Reed, Jeremy C. "Delegating superuser tasks with sudo", BSD Today. June 2000,
URL: http://www.bsdtoday.com/2000/June/Features192.html (11 June 2001).

11. Shama, Kapil. "Delegating Limited Superuser Access with Sudo", Linux.com. 29
June 2000. URL:
http://www.linux.com/security/newsitem.phtml?sid=11&aid=9814 (11 June 2001).

12. "Sudo", URL: http://www.courtesan.com/sudo (11 June 2001)
13. "SSH" URL: http://www.ssh.com (11 June 2001)
14. "SSH FAQ" URL: http://www.employees.org/~satch/ssh/faq (11 June 2001)\

