
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Essentials: Network, Endpoint, and Cloud (Security 401)"
at http://www.giac.org/registration/gsec

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gsec

CODING FOR INCIDENT RESPONSE:
Solving the Language Dilemma

GIAC (GSEC) Gold Certification

Author: Shelly Giesbrecht, headnerd@nerdiosity.com

Advisor: Mark Stingley

Accepted: July 22nd, 2015

Abstract

Incident responders frequently are faced with the reality	
 of	
 “doing	
 more	
 with	
 less”	

due to budget or manpower deficits. The ability to write scripts from scratch or

modify the code of others to solve a problem or find data in a data "haystack" are

necessary skills in a responder's personal toolkit. The question for IR practitioners

is what language should they learn that will be the most useful in their work? In this

paper, we will examine several coding languages used in writing tools and scripts

used for incident response including Perl, Python, C#, PowerShell and Go. In

addition, we will discuss why one language may be more helpful than another

depending on the use-case, and look at examples of code for each language.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 2

Shelly Giesbrecht, headnerd@nerdiosity.com

1. Introduction
Lack of financial and staff resources are a chronic issue for incident responders.

On any given day, in any given organization, members of computer security incident

response teams (“CSIRT”s) can find themselves figuratively hip-deep in data. C-level

types expect answers to urgent questions like: “What happened?”, “What was taken?”,

“How did the attacker get in?” The ability to deliver these answers in a timely and

accurate manner is directly related to the amount of resources available to a CSIRT. A

2014 survey of incident responders by the SANS Institute (Torres, 2014) suggests that

many organizations are unable to staff a dedicated CSIRT due to budgetary issues and

consequently rely on resources from other internal teams to bolster an investigation

when, and if, an incident is detected. In the same survey, 39% of respondents stated they

were unaware of any funds being allocated to Incident Response (“IR”), and 30% stated

there were no funds allocated. This may mean that CSIRT teams or individual

responders are without enterprise-grade technology to assist in their investigations, and

without training dollars to advance their skill sets to offset tool deficiencies.

With cyber incidents on the rise, the central question is how can incident

responders “do more with less”; that is how can they improve their ability to prevent,

detect, and respond with small budgets and teams? In this paper, we will examine the

benefits of learning to code for incident responders. In addition, we will look at coding

languages frequently used in IR, the benefits and drawbacks of each language, and why

one language might be used over another for a specific task. Lastly, we will review an

example of a script or tool written in each language.

2. Coding for Incident Response
2.1. Why learn to code?

The obvious answer to why an incident responder would want to learn to code is

to be able to code. While this sounds like oversimplifying the answer, prolific Digital

Forensics and Incident Response (“DFIR”) blogger David Cowen (2013) suggests that

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 3

Shelly Giesbrecht, headnerd@nerdiosity.com

learning to code will allow growth as a responder, increase efficiency, and reduce

frustration. For most IR professionals, the journey to coding proficiency starts with a

need or a problem that needs a solution. A common issue that learning to code may help

to resolve is a budgetary one. Many smaller organizations simply do not have the budget

to purchase commercial tools that would ease the burden of their IR staff, if they even

have dedicated IR staff.

Another type of problem maybe a technical one, perhaps a need to automate a

repetitive task, chain together a set of scripts or utilities, or find an IP address in a

mountain of firewall log files. The ability to code enables a responder to work smarter,

and either create or modify existing scripts or tools to meet their own requirements.

Lastly, with the flood of new artifacts being documented from DFIR research and

investigations, it is almost certain that scripts or tools to extract, parse and validate those

artifacts do not exist in either the commercial market or open-source community, or an

existing tool may no longer adequately accomplish the job at hand.

Whatever the reason for choosing to pick up coding skills, the next question to

face is what language to choose.

2.2. What language is the right choice?
Just like spoken languages, computer-programming languages each have their

own idiosyncrasies, benefits, limitations, cadence, and syntax. Choosing the right

language to learn can make the difference between success and failure, just like learning

Spanish for a trip to Japan.

Toal (n.d.) describes categories of programming languages as follows:

x Machine languages — interpreted directly in hardware

x Assembly languages — thin wrappers over a corresponding machine language

x High-level languages — anything machine-independent

x System languages — designed for writing low-level tasks, like memory and
process management

x Scripting languages — generally extremely high-level and powerful

x Domain-specific languages — used in highly special-purpose areas only

x Visual languages — non-text based

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 4

Shelly Giesbrecht, headnerd@nerdiosity.com

x Esoteric languages — not really intended to be used

A general understanding of these categories and their features is inherent to selecting the
appropriate language to learn. A language may exist in more than one category;
however, ability to use a feature of category does not make a language a good choice
(Suh, 2002). More important to the decision of what language to use is the end goal.
Carvey (2014) suggests that it is this goal, and the mode of getting to it that matters most.
In other words, choose a language based on features that will best aid the path to
successful completion of the defined objective. In the following sections, we will
examine several languages that are popularly used in coding for incident response and
discuss how each language may be well suited to the needs of a particular goal.

3. Coding Languages
3.1. Perl
3.1.1. History of Perl

Perl or the Practical Extraction and Report Language made its debut in 1987 on

the ‘comp.sources’ UseNet newsgroup as a text processing language for Unix or Unix-

like operating systems (Kuhn, 2001). The creator of Perl, Larry Wall wanted to bridge

the gap between two concepts he referred to as “manipulexity” and “whipupitude”.

Manipulexity refers to the “manipulation of complex things” by high-level

languages like C (Wall, 2006). Most of the major operating systems used today including

UNIX, Linux, and Windows are written in C or C-based languages. This is because C is

highly structured, can be compiled on different platforms and the programs created are

efficient (“C Language”, n.d.). In contrast, whipupitude or the ‘aptitude for whipping

things up’ describes the ease with which programmers could use utilities like AWK to

create handy scripts and programs (Kuhn, 2001).

3.1.2. Why use Perl?
What would make you crazy enough to use Perl? We believe that many

beginning programmers ask themselves that question when first attempting to learn to

code in Perl. Over the course of its development, Perl became the language of choice for

many coders and an object of fear for many others. The reasons for these opinions lie

mainly in one key feature of Perl, which some consider an advantage and others, a

limitation.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 5

Shelly Giesbrecht, headnerd@nerdiosity.com

Within the syntax of Perl, it is possible to accomplish the same thing in a variety

of ways. This is called the ‘TIMTOWTDI’ philosophy, or ‘there is more than one way to

do it’ (Newkirk, 2014). For experienced programmers, the ability to write a string of

code using syntax they like the most or know the best and simply enclosing the result in

some braces is much preferable to being constrained to the more structured approach

some of the later languages discussed take. On the other hand, it is suggested that

beginners in coding will acquire bad habits when left to their own devices in the more

laissez-faire style of Perl (Mikoluk, 2013).

 Aside from the aforementioned TIMTOWTDI philosophy, Perl is widely

considered low on the usability scale. In their study on the usability of Perl, Python and

Tcl, Pfeiffer and Wang (2002) found that Perl suffered from a number of difficulties

including challenging language constructs that made Perl harder to learn and use over

time.

A clear advantage Perl has held over its competition for quite some time is the

large library of modules written over the years and collected in the CPAN

(Comprehensive Perl Archive Network) repository (Banerjee, 2012). The modules

housed in CPAN allow a rank beginner or a seasoned developer to re-use code that others

have contributed in their own work to solve virtually any problem programmatically.

Regular Expressions or ‘RegEx’ is another reason Perl continues to hold its

popularity. RegEx gives coders the ability to define an expression that can describe one

or more strings (Kuhn, 2001). In RegEx, special characters are used to assist in these

definitions. For example, a pipe symbol, ‘|’, is used to separate alternate characters or

strings. The following simple expression indicates either “A” or “B”:

A|B

This ability to describe strings while harnessing the string manipulation power of other

tools like AWK and SED make Perl RegEx a dominant tool in data processing for

incident responders and sysadmins alike.

 In the realm of benefits, one more very important one comes to mind for Perl.

Incident responders are frequently called upon to work on a variety of operating systems.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 6

Shelly Giesbrecht, headnerd@nerdiosity.com

While Perl comes natively installed on most Unix/Linux distributions, it is also easily

ported to Windows and Mac OS systems (Newkirk, 2014). This ubiquity allows

responders the possibility of writing one script or tool that can be run across multiple

platforms. Carvey (2007) suggests that one common theme across the practice of

incident response is that there is no such thing as one type of incident or investigation.

Perl’s portability makes it a natural ally for a seasoned responder.

3.1.3. Perl in Action
There is no better tool to demonstrate the power of Perl than RegRipper by Harlan

Carvey. RegRipper is an offline Windows registry analysis tool that automates the

retrieval, parsing and translation of registry data, and the last-written timestamp for that

data, into human readable output files (Carvey, 2010). As many responders do, we count

RegRipper among the first line of tools used in an investigation. Statistics available on

the project homepage for RegRipper on Google Code (2015) indicate the current version

2.8 has been downloaded 18817 times as of June 18, 2015. Registry hives can be

analyzed using the rr.pl script on the command line or via the GUI using the rr.exe

executable.

Figure 1. RegRipper Perl script ‘rr.pl’

The power of RegRipper comes from the plug-ins, which are individual Perl

scripts that each performs a different parsing operation (Carvey, 2010). A plethora of

plug-ins are already available, but as the RegRipper project is totally open source,

creating a new plug-in to fill a void or extract a newly discovered artifact from the

registry is an option for any responder willing to contribute.

The USBSTOR registry key found at

HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR\ and an entry is created or

updated every time a USB device is connected (Barbara, 2012). Using RegRipper and

the plug-ins written for USBSTOR, it is trivial to extract all devices that have been

connected to a computer system and the last-written timestamp.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 7

Shelly Giesbrecht, headnerd@nerdiosity.com

Figure 2. RegRipper output: USBSTOR entries

In an investigation, this information enables a responder to identify whether and

when a particular device was connected to a system, and possibly connect the owner of

the device to the investigation. All this is accomplished in mere seconds with the power

of Perl.

3.2. Python
3.2.1. History of Python

Python has recently seen an upswing in its popularity that may lead new coders to

believe it is a newly released language. While it is newer than Perl, Python was actually

developed as a scripting language by Guido Van Rossum in 1989 and publically released

in 1991 (Barbara, 2003). The development of Python diverged in 2008 with the release

of 3.0, a new version that was wholly incompatible with the 2.x hitherto released (PSF,

2008). Similar to the schism between the coders of Perl and Python regarding superiority

of their preferred language, a similar schism has developed between devotees of Python

2.x and 3.x. releases. Both versions have current releases as of 2015, with the 2.x version

standing at 2.7.10 and the 3.x version at 3.4.3 (PSF, 2015).

3.2.2. Why use Python?
The popularity Python is currently enjoying is in large part to do with its high

level of usability. The ease with which the constructs of Python can be learned and used

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 8

Shelly Giesbrecht, headnerd@nerdiosity.com

in comparison to Perl contributes to this usability (Pfeiffer & Wang, 2002). Similar to

Perl, Python is considered a scripting language, but in contrast to the ability of Perl

programmers to vary their syntax to achieve the same objective, Python implements very

rigid conventions that must be adhered to for a successful outcome (Mikoluk, 2013).

This benefits new learners of programming, as they are able to easily follow the

multitude of online tutorials and use the same syntax and constructs.

A major complaint about Python is the speed of execution compared to other

languages. This is said to be due, in large part, to Python being dynamically typed (type

checking is done at runtime) as opposed to statically typed (type-checking is done during

compilation) (Vanderplas, 2014). What this means is that a Python script or application

must interpret its code while it executes. This requirement adds overhead to the overall

processing and renders Python up to 1.5 times slower than other languages that are

interpreted when compiled (Zaïane, 2007).

One feature of Python that is highly praised or highly decried depending on what

camp of coders it originates from is Python’s use of whitespace to mark blocks of code

instead of, for example, curly braces. This is considered an advantage by some as it

underlines the rule of having only one way to write Python (Levin, 2011). A script

written in Python will simply not run if the indents are not lined up properly. The

required attention to detail ensures that coders new to Python are unable to ignore the

importance of proper syntax and subsequently, may learn quicker as they are not

confused by varied methods to achieve the same goal. On the other hand, the

idiosyncratic conventions Python employs means that translating code written in Python

to other languages is not trivial.

Another outcome of the popularity of Python is the proliferation of modules being

developed for Python in the same vein as Perl. This is evident particularly in the incident

response and digital forensics field where Python modules are being showcased in

academic papers and blogs. In his paper “Grow Your Own Forensics Tools: A

Taxonomy of Python Libraries Helpful for Forensic Analysts”, O’Connor (2010)

discusses and gives examples of several Python libraries that could be used to build tools

and scripts to assist forensic analysis. More recently, David Cowen (2015) has written a

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 9

Shelly Giesbrecht, headnerd@nerdiosity.com

series of blog posts using Python modules to extract, examine, and analyze a forensic

image. The community-driven approach to building up these modules is similar to Perl

and the number of libraries and modules available will soon rival CPAN.

3.2.3. Python in Action
There is perhaps no other Python project currently being used by incident

responders that receives more attention than Volatility. Developed as an open source

alternative for memory and volatile data analysis, Volatility was first released at

BlackHat in 2007 and is said to be the ‘most widely used memory forensics platform’

(Volatility Foundation, 2013). As more and more cyber-attacks are using methods that

never touch the physical file system, an advanced capability to analyze dynamic sources

of data is imperative. Volatility provides this capability with a multitude of profiles for

different operating systems and versions, as well as an entire library of plug-ins to

examine volatile images for artifacts.

A good place to start for any incident responder when a system is suspected of

being compromised is rogue processes. Volatility provides four main plug-ins for

examining a system’s running processes. First, pslist will list the processes of system and

includes that start and exit time of a process, but does not display any hidden or unlinked

processes (Hale-Ligh et al, 2014a). This can be useful when looking for process start

times that do not coincide with system start-up time.

Figure 3. Command to run pslist for a Windows 7 x64 system (Volatility Foundation,

2015).

Secondly, pstree shows the same list but in a tree format so that the parent-child

relationships are visible. Similar to pslist, hidden and unlinked processes are not

displayed (Hale-Ligh et al, 2014b). Pstree is very helpful to find a process that may be

considered normal in pslist but is not linked to its expected parent process, and therefore,

could be considered suspicious.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 10

Shelly Giesbrecht, headnerd@nerdiosity.com

Figure 4. Command to run pstree for a Windows 7 x64 system (Volatility Foundation,

2015b).

Next, psscan lists all processes seen by pslist and pstree, but can also uncover

processes that are already terminated, or altered by a rootkit and hidden or unlinked

(Hale-Ligh et al, 2014c). Any processes that appear in psscan that did not appear in pslist

or pstree may be considered suspicious and require further investigation.

Figure 5. Command to run psscan for a Windows 7 x86 system (Volatility Foundation,

2015c).

Lastly, if the process is well and truly hidden, Volatility provides one more plug-

in, psxview, that provides a comprehensive view of all currently available locations

where processes could be listed. Each possible location for each process is marked

“True” when evidence of the process is found, and “False” when a process is found to be

missing for that location (Volatility Foundation, 2014). As below, the process

1_doc_RCData_61 would be considered suspicious as it was found in evidence in every

location but where pslist displays (Hale-Ligh et al, 2014d).

Figure 6. Command and output for psxview (Volatility Foundation, 2015d.)

The portability of Python allows Volatility to be use for IR triage easily and quickly on

most major platforms. In addition, the smaller learning curve for Python as opposed to

other coding languages allows many more people to contribute (and to feel they can

contribute) to the Volatility plug-in library.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 11

Shelly Giesbrecht, headnerd@nerdiosity.com

3.3. C#
3.3.1. History of C#

While “cool” is not what may initially come to mind when thinking about C# (“C-

sharp”), the name C# was originally given was ‘C-like Object Oriented Language’ or

‘Cool’ (Hamilton, 2008). Currently in its fifth version, C# was originally released in

2001 by Microsoft with the intent of creating applications in .NET that were platform and

runtime agnostic (Dillon, 2002). This means that programs written in C# could be run on

virtually any architecture, although porting to Apple iOS or Android requires a utility

called Xamarin, and for Linux, a framework called Mono (O’Brien, 2014). C# is

considered to have stemmed from the C-based language family, although comparisons to

Java are frequently made.

3.3.2. Why use C#?
C# seems an unlikely choice for incident response given that it is not considered a

scripting language like Perl, Python, or PowerShell. However, there are some features of

C# that could be considered advantages over the others discussed here depending on the

objective of a responder. Unlike the coding languages described thus far, C# is a

statically typed language which means it is interpreted when it is compiled (O’Brien,

2014). This means the overhead incurred when a script or application is interpreted at

run-time like Python does not occur with C#, and therefore, it should perform a similar

function faster.

 In addition to the lower overhead at runtime, complied C# code meets the

Common Type Specifications (“CTS”) (Introduction to the C#, n.d.). This means that it

can be integrated easily with the approximately twenty other .NET Framework languages

that also meet CTS. This ability to integrate was extended even further with the release

of C# version 4 and the introduction of dynamic keywords (Ochal, 2010). This new

feature meant that statically typed C# was also able to interact with dynamic languages

like Perl or Python.

 The drawback to allowing dynamic-type functionality into C# code was that it

limited or removed the advantages gained from being statically typed; namely, speed of

execution (Allen, n.d.). We can assume that while there may be reasons when to use

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 12

Shelly Giesbrecht, headnerd@nerdiosity.com

dynamic keywords for C# coding integration, the benefits must outweigh the

consequences.

3.3.3. C# in Action
When investigating a case of employee malfeasance where an individual may be

accused of accessing or taking files they were not authorized to, a frequent denial heard

by incident responders is “I have never even opened that directory”. A key artifact is

establishing whether this access was made, in addition to when, is assisted by Windows

Registry keys found in the NTUSER.dat and UsrClass.dat hives called Shellbags

(McQuaid, 2014). Shellbags are found in the following locations:

Windows XP:

x NTUSER.DAT\Software\Microsoft\Windows\Shell

x NTUSER.DAT\Software\Microsoft\Windows\ShellNoRoam

x NTUSER.DAT\Software\Microsoft\Windows\StreamMR
Windows 7:

x NTUSER.DAT\Software\Microsoft\Windows\Shell

x UsrClass.dat\Local Settings\Software\Microsoft\Windows\Shell

(Pullega, 2013)

Within the registry, shellbags are not human readable and therefore require a

utility to extract and parse the data to make it usable for investigation. To achieve this,

Figure 7. Shellbags registry key and values in NTUSER.dat in Windows 7

Eric Zimmerman created ShellBags Explorer (SBE). SBE was released in 2014 and

provides an investigator with the means to view parsed data from the shellbags keys as if

they were looking at the user in question’s directory structure (Zimmerman, 2015).

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 13

Shelly Giesbrecht, headnerd@nerdiosity.com

Figure 8. ShellBags Explorer output on live Windows 7 registry

The output from SBE displays the timestamp the entry was created (i.e.: first accessed by

the user), as well as last modified and last accessed dates.

According to Zimmerman (2015a), a main driver for using C# in the development of

SBE was the ability to create an attractive gui in a non-web-based medium. The result is

a Windows Explorer-like interface that an experienced Windows user can navigate with

ease.

3.4. PowerShell
3.4.1. History of PowerShell

When Microsoft wanted to update the commandline shell, PowerShell was the

result. Originally named ‘Monad’, PowerShell was intended to replicate the ease and

flexibility of shells available on UNIX and Linux systems, as well as provide a powerful

scripting language that integrated seamlessly with the .NET Framework (Lee, 2005).

Currently in version 5.0, PowerShell has become the de-facto standard for shell and

scripting in the Windows environment.

3.4.2. Why use PowerShell?
The ubiquity of PowerShell in modern Windows operating systems is its most

obvious strength. PowerShell is installed by default on Windows 7/Windows Server

2008R2 forward (MSDN, 2008). A language written by Microsoft for Windows suggests

a virtual wealth of possibilities for incident responders to interact with target systems. In

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 14

Shelly Giesbrecht, headnerd@nerdiosity.com

absence of availability of other IR tools and scripts, PowerShell provides a responder

with a native tool already in existence.

Now that we have PowerShell though, what can we actually do with it? The answer

lies in what might be called the build-blocks of PowerShell. The name ‘Monad’ came

from a philosophy called ‘Monadism’ that suggested that small bits of matter, of which a

monad is the smallest, combine to create the world (Lee, 2005). PowerShell is comprised

of a library of small commands called ‘cmdlets’ that enable the user to manage all facets

of Windows systems (TechNet, 2014). Cmdlets can be written in any .NET compliant

language including C# and are named in a very user-friendly noun-verb format (Lee,

2005). For example, a cmdlet in frequent use is ‘GET-COMMAND’. When invoked in a

PowerShell command shell, this cmdlet will display all available cmdlets for the version

installed. These cmdlets can be used individually or in combination to allow an incident

responder to interrogate any Windows system past Windows XP SP2.

Figure 9. PowerShell Get-Command output

 A criticism of using PowerShell for incident response or digital forensics was

made by Andrew Case on Twitter. Case (2014) suggested that since PowerShell scripts

are still running on a live system, the API calls made could still be hooked by malicious

processes. The implication is that the results would be invalid or skewed. The decision to

use PowerShell for IR purposes may then depend on what is the objective of the

responder (ie: Does the objective involve malware?) or possibly, the scope of the

examination (ie: Could PowerShell be used across a large volume of systems to collect

information that would be used to determine whether a deeper dive was required?).

 Lastly, the biggest drawback of PowerShell is it is limited to Windows systems.

While this isn’t a problem when a organization is wholly a Windows ‘shop’, throwing in

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 15

Shelly Giesbrecht, headnerd@nerdiosity.com

a mix of other platforms means that incident responders will require a broader skillset

that just PowerShell.

3.4.3. PowerShell in Action
The ability to be deploy tools and scripts quickly and efficiently in IR is imperative in

order not to miss critical data or indicator of compromise (“IOC”). What if you had to
perform IR activities across literally thousands of Windows systems on a daily basis?
What if your network was under constant attack by external attackers as well as an
internal red team? These are just some of the challenges that face the Incident Response
team at Microsoft.

Kansa is a modular PowerShell-based IR framework written by Dave Hull that
collects and analyzes data from Windows systems across an enterprise using PowerShell
Remoting capabilities (Hull, 2014). Hull, as it happens, is an incident responder at
Microsoft.

Figure 10. Running kansa.ps1

Data collection in Kansa is accomplished by running the main PowerShell script
‘kansa.ps1’ and specifying the modules and list of target hosts. Once the data is
collected, analysis on the data is available. The caveat to the Analysis modules is that
they were written to parse through data for multiple systems, from dozens to many
thousands (Hull, 2015a). This means that analysis on one machine is not possible as
many of the points of analysis rely on comparison. For example, the Kansa module ‘Get-
Autorunsc.ps1’ leverages the SysInternals Autorunsc.exe to collect data on Auto Start
Extension Points (ASEP) including ASEP hashes (Hull, 2015b). A step in the analysis
compares the ASEP hashes from one system to others collected. The figure below shows
that for ten domain controllers where data was collected, all ten returned the same seven
ASEP hashes (Hull, 2014). In this case, a responder may consider this a non-finding, or

 Figure 11. ASEP hashes collected from 10 domain controllers (Hull, 2014).

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 16

Shelly Giesbrecht, headnerd@nerdiosity.com

choose to investigate further. It is important to note that the only thing that is certain
from the hashes returned is that they are identical to each other on all ten systems. There
is not yet any indication of their legitimacy.

 Taking into account the limitation of PowerShell as an IR language previously
mentioned, we can assume that once data has been collected and analyzed, the usefulness
of the data will depends on the problem being faced. With that said, we can also
reasonably assume that the output from the Kansa analysis will be able to identify, with
some degree of confidence, systems that display IOCs that require further investigation.

3.5. GO
3.5.1. History of Go

In terms of the languages discussed in this paper, Go can be considered the new

kid on the block. Starting as a concept in 2007, Go was publically released in November

2009 (The Go Programming, n.d.). The impetus behind the development of Go was a

language that would provide faster programming and compiling, better overall

performance at run-time and an enjoyable user experience (Turner, 2010). Varghese

(2014) suggests that what makes Go so unique is its focus on real-world, current

applications instead of following the established practices of its predecessors, C# and

Java. The intent then of Go is more in line with C#, as a language for building

applications, as opposed to more scripting focused languages like Perl, Python or

PowerShell.

3.5.2. Why use Go?
For the coding traditionalists, Go has many of the features its predecessors have

including statically typed variables and garbage collection (Varghese, 2014). While this

provides better runtime performance and memory management, Go may still seem to be

another unlikely choice for the world of IR where agility is a key factor. Additionally, it

has been suggested that library support in Go is still quite limited (Jenkins, 2014). This

might be expected from a language that is not as well established as other we have

previously reviewed. However, a number of key differentiators separate Go from more

traditional C-based languages.

First, the syntax of Go is compact and considered relatively easy to learn (Forbes,

2013). This means that it is becoming more and more popular among newer coders

looking for a more modern and succinct way to learn to code. In addition, Go was

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 17

Shelly Giesbrecht, headnerd@nerdiosity.com

developed with concurrency in mind. Concurrency describes the ability of Go to execute

multiple processes simultaneously and is a core component of cloud-based application

development (Asay, 2014). As multi-core or multi-processor architecture becomes the

norm, the ability to take advantage of that processing power is a key consideration for

developers. Go uses a combination of goroutines and channels to provide its own brand

of concurrency. Goroutines use channels to move values and to communiciate with more

security and effiency (Varghese, 2014).

Perhaps the most intriguing feature of Go is that despite its ties to statically typed

languages for performance, it is suggested that the experience of coding in Go is similar

to many dynamic languages (McAllister, 2012). The idea that a coding language could

not only run quickly but also allow creativity and be fun to work with appears to be quite

a novel concept. One of Go’s core developers, Rob Pike (2012) maintains that while he

originally thought C++ programmers would obviously move to Go, a more “expressive”

language that retained many of C++’s features, in reality, they observed far more Python

and similar language coders adopt Go as a means of acquiring better performance and

concurrency while retaining creativity. It is this hybrid and flexible nature of Go that

may see it become a more dominant choice for IR professionals.

3.5.3. Go in Action
In the section on PowerShell, we discussed Kansa, a Windows-centric tool for

scanning systems across a large organization for signs of compromise. While extremely

powerful, what if the organization in question has a very large contingent of Linux/Unix

systems with some Mac OS thrown in for good measure?

Enter the Mozilla InvestiGator (“MIG”) from Mozilla. MIG was introduced in 2013

by Julien Vehent as a fully open source project (Mozilla.org, n.d.). The intention for

MIG was as a light-weight, portable and nimble incident response tool that could ingest

IOCs from one or more systems, and query in near real-time for those same IOCs on any

other systems enterprise-wide (Vehent, 2015). It may be considered an open-source

competitor to commercial products like FireEye’s Mandiant MIR or Bit9’s CarbonBlack,

and for organization with smaller budgets, could be an entry into threat detection across

enterprise for minimal cost.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 18

Shelly Giesbrecht, headnerd@nerdiosity.com

MIG functions using a centralized console to control agents installed on endpoints

in an environment to interrogate those endpoints for interesting forensic artifacts. A Go

package called a module can be utilized to perform specific functions on endpoints

including inspecting files, scanning memory and conducting network status checks

(Mozilla.org, n.d.-2).

Figure 12. MIG High Level Architecture (Mozilla.org, n.d.-2)

One downside to using Go for modules is that Go is unable to load new modules

dynamically at runtime, so all modules required must be compiled into the agent’s binary

before deployment (Mozilla.org, n.d.-3). This means that each time a new module is

developed, a new agent binary would need to be compiled and deployed to all monitored

systems. Obviously, this limits the nimbleness of MIG in situations where a module may

need to be created or modified on the fly during an incident.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 19

Shelly Giesbrecht, headnerd@nerdiosity.com

On the plus side, the agent is one static binary that has no dependencies (Vehent,

2015). This means that no additional software need be installed on an endpoint, and with

platform support for Linux, Mac OS and Windows for most basic modules, MIG is

highly portable.

Overall, MIG is still very new utility but with its open-source roots, the backing of

Mozilla, and its very reasonable price, MIG is a viable option for small or large

organizations with multi-platform environments and a need for fast detection on the

endpoint.

4. Conclusion
For an incident responder, the difference between success and failure in an

investigation can come down to the know-how they bring to the table. With more than

55% of incident responders lacking budgets for tools and technology (Torres, 2014), it is

even more important than ever to be able to execute as precisely and quickly as possible.

In this paper, we have examined the reasons why coding may be an important skill to

learn and develop for incident response teams. Of those discussed, perhaps the single

more important reason is simply that knowing how will make you a better responder.

Even with commercial tools to aid in investigations, being able to script a solution to

problem, having a command of what is going on “under the hood” and eventually, being

able to devise a new utility to parse a yet undiscovered or little understood artifact should

be considered a desired (if not mandatory) path for those on the road to IR proficiency.

In addition, we reviewed the history of some commonly used coding languages in

Incident Response and Digital Forensics including Perl, Python, C #, PowerShell and Go.

In discussing the relative merits and limitations of each language, the conclusion we can

draw is that the choice of which language should be not based on mere preference for one

over another, but should lay heavily in what the problem to be solved requires. While

each language overlaps several others in the types of features it can do, it behooves us to

look for the best code for the job.

With respect to text processing and manipulation, Perl is probably still the most likely

choice for speed, flexibility, and performance but it lacks the usability and structure of

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 20

Shelly Giesbrecht, headnerd@nerdiosity.com

Python. On the other hand, for use in the development of more full-featured applications

that execute quickly, and possibly include a GUI for a user-friendly experience, C# is the

obvious candidate. However, Go is making gains in this area as it appeals to both

traditional and modern coders.

Platform-specific issues may also be at the root of what language will work the best.

For Windows environments where no other tools are available or allowed to be installed,

or where the ability to interact natively with the operating system is critical, PowerShell

will be a go-to selection. For multi-platform usage, a responder may likely decide on

Python, or opt for the hybrid static/dynamic capabilities of the newer Go.

The tools we have discussed show the incredible depth and breadth of research and

development going on within the Incident Response community. There is no doubt that

they are all utilities that serious responders should already have in their arsenal or

seriously consider adding. The one commonality between all these tools is that their

developers openly encourage suggestions and discussion to enhance the functionality and

usability, no matter what language being used.

 A last word for future and current IR practitioners is that the path to proficiency

lies in not only the betterment of ones’ own skills, but in the enrichment of our practice in

general. Learning to code will not only makes you a better responder, it will assist you in

contributing more fully in the IR community at large.

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 21

Shelly Giesbrecht, headnerd@nerdiosity.com

5. References

Allen, Sam (n.d.). Dynamic. Retrieved from http://www.dotnetperls.com/dynamic

Asay, Matt (2014, March 13). Adoption of Google's programming language is rapidly

gaining on Java and others [Blog post]. Retrieved from

http://readwrite.com/2014/03/21/google-go-golang-programming-language-

cloud-development

Banerjee, Asit (2012, November 9). Benefits of Perl Scripting [Blog Post]. Retrieved

from http://asitbanerjee.blogspot.ca/2012/11/benefits-of-perl-scripting.html

Barbara, John J. (2012, August 10). Windows 7 Registry Forensics: Part 6 [Blog

Post]. Retrieved from http://www.forensicmag.com/articles/2012/08/windows-7-

registry-forensics-part-6

Carvey, Harlan (2007). Perl Scripting for Windows Security: Live Response,

Forensic Analysis, and Monitoring [Kindle PC version]. Retrieved from Amazon.com

Carvey, Harlan (2010, May 10). About [Webpage]. Retrieved from

https://regripper.wordpress.com/regripper/

Case, Andrew [attrc] (2014, March 13). I am wondering why many #dfir people

seem so interested in 'PowerShell foresnics' [Twitter post]. Retrieved from

https://twitter.com/attrc/status/444163636664082432

Cowen, David. (2013, July 10). Daily Blog #17: Milestones 11 And 12 Detailed [Blog

Post]. Retrieved from www.hecfblog.com/2013/07/daily-blog-17-milestones-11

and-12.html

Cowen, David. (2015, February 19). Part 1 - Accessing an image and printing the

partition table. In Automating DFIR - How to series on programming libtsk with

python. Retrieved from http://www.hecfblog.com/2015/02/automating-dfir-how-

to-series-on.html

Dillon, Shawn (2002, March 25). Why should you add C# to your skill set? [Blog

post]. Retrieved from http://www.techrepublic.com/article/why-should-you-add-

c-to-your-skill-set/1027622/

Donaldson, Toby (2003, April 25). Python as a First Programming Language for

Everyone. Retrieved from

https://www.cs.ubc.ca/wccce/Program03/papers/Toby.html

Forbes, Dennis (2013, July 23). The Most Powerful Feature of Go Is The Least Sexy [

Blog post]. Retrieved from https://dennisforbes.ca/index.php/2013/07/23/the-

most-powerful-feature-of-go-is-the-least-sexy/

Fulton, Scott (2006, June 14). TechEd 2006: Microsoft demonstrates first

PowerShell release candidate. Retrieved from

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 22

Shelly Giesbrecht, headnerd@nerdiosity.com

http://www.tomshardware.com/news/teched2006-PowerShell-underlie-admin-

guis,2959.html

Google Code (2015). [Table of available downloads and statistics June 18, 2015].

Google Code project for RegRipper. Retrieved from

https://code.google.com/p/regripper/downloads/list

Hale-Ligh, M., Case, A., Levy, J., & Walters, A. (2014, July 28). The Art of Memory

Forensics [Kindle PC version] Retrieved from Amazon.com

Hamilton, Naomi (2008, October 1). The A-Z of Programming Languages: C#.

Retrieved from http://www.computerworld.com.au/article/261958/a-

z_programming_languages_c_/?pp=2

Hull, Dave, (2014, July 18). Kansa: A PowerShell-based incident response

framework [Blog post]. Retrieved from

http://www.PowerShellmagazine.com/2014/07/18/kansa-a-PowerShell-based-

incident-response-framework/

Hull, Dave, (2015a, April 23). Kansa [software]. Available from

https://github.com/davehull/Kansa/blob/master/README.md

Hull, Dave, (2015b, April 29). Kansa: Autoruns data and analysis [Blog post].

Retrieved from http://trustedsignal.blogspot.ca/2014/04/kansa-autoruns-data-

and-analysis.html

Jenkins, Tim (2014, March 6). How to Convince Your Company to Go With Golang

[Blog post]. Retrieved from https://sendgrid.com/blog/convince-company-go-

golang/

Kuhn, Bradley M. (2001, January 9). Background of Perl [Blog Post]. Retrieved from

http://www.ebb.org/PickingUpPerl/pickingUpPerl_9.html

Kuhn, Bradley M. (2001, January 9). Regular Expressions [Blog Post]. Retrieved

from http://www.ebb.org/PickingUpPerl/pickingUpPerl_7.html

Lee, Thomas (2005, November). Monad: The Future of Windows Scripting.

Retrieved from https://technet.microsoft.com/en-

us/magazine/2005.11.scripting.aspx

Levin, Mike (2011, January 5). Python Programming Language Advantages and

Disadvantages [Blog Post]. Retrieved from http://mikelev.in/2011/01/python-

programming-language-advantages/

McAllister, Neil (2012, January 3). 10 programming languages that could shake up

IT [Blog post]. Retrieved from

http://www.javaworld.com/article/2078503/mobile-java/10-programming-

languages-that-could-shake-up-it.html

McQuaid, Jamie, (2014, August). Forensic Analysis of Windows Shellbags [Blog

post]. Retrieved from http://www.magnetforensics.com/computer-

forensics/forensic-analysis-of-windows-shellbags

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 23

Shelly Giesbrecht, headnerd@nerdiosity.com

Mikoluk,	
 Kasia	
 (2013,	
 August	
 5).	
 	
 Perl	
 vs	
 Python:	
 What’s	
 the	
 Difference?	
 [Blog	
 Post].	
 	

Retrieved from https://blog.udemy.com/perl-vs-python/

Mozilla.org (n.d.). About Mozilla InvestiGator [Web page]. Retrieved from

http://mig.mozilla.org/about.html

Mozilla.org (n.d.-2). Mozilla InvestiGator Documentation [Web page]. Retrieved

from http://mig.mozilla.org/doc.html

Mozilla.org (n.d.-3). MIG Modules [Web page]. Retrieved from

http://mig.mozilla.org/doc/modules.rst.html

MSDN (2008, October 28). PowerShell will be installed by default on Windows

Server 08 R2 (WS08R2) and Windows 7 (W7)! [Blog post]. Retrieved from

http://blogs.msdn.com/b/PowerShell/archive/2008/10/28/PowerShell-will-be-

installed-by-default-on-windows-server-08-r2-ws08r2-and-windows-7-w7.aspx

MSDN(n.d.). Introduction to the C# Language and the .NET Framework Retrieved

from https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

Newkirk, Al (2014, April 16). 10 Reasons to Never Use Perl, Ever [Blog Post].

Retrieved from https://engineering.tilt.com/never-ever-use-perl/

O’Brien,	
 Gerry	
 (2014,	
 June	
 3).	
 	
 A	
 brief	
 history	
 of	
 C#	
 [Transcript].	
 	
 Retrieved	
 from	

http://www.lynda.com/C-tutorials/brief-history-C/164452/176185-4.html

O’Connor	
 (2010,	
 April	
 1).	
 	
 Grow	
 Your	
 Own	
 Forensics	
 Tools:	
 A	
 Taxonomy	
 of	
 Python

Libraries Helpful for Forensic Analysts [PDF document]. Retrieved from

https://digital-forensics.sans.org/community/papers/gcfa/grow-forensic-tools-

taxonomy-python-libraries-helpful-forensic-analysis_6879

Ochal, Zenon (2010, December 4). Dynamic Language Integration in a C# World

[Blog Post] Retrieved from https://www.simple-talk.com/dotnet/.net-

framework/dynamic-language-integration-in-a-c-world/

Pfeiffer, P. & Wang, L. (2002). A Qualitative Analysis of the Usability of Three

Contemporary Scripting Languages: Perl, Python and Tcl. Retrieved from

http://legacy.python.org/workshops/2002-02/papers/14/index.htm

Pike, Rob (2012, June 25). Less is exponentially more [Blog post]. Retrieved from

http://commandcenter.blogspot.it/2012/06/less-is-exponentially-more.html

Pullega, Dan (2013, December 4). Shellbags Forensics: Addressing a Misconception

(interpretation, step-by-step testing, new findings, and more) [Blog Post]. Retrieved

from http://www.4n6k.com/2013/12/shellbags-forensics-addressing.html

Python Software Foundation (2008, December 3). Python 3.0 Release. Retrieved

from https://www.python.org/download/releases/3.0/

Python Software Foundation (2015). [Software download page] Retrieved from

https://www.python.org/downloads/

TechNet (2014, August 4). Scripting with Windows PowerShell. Retrieved from

https://technet.microsoft.com/en-us/library/bb978526.aspx

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 24

Shelly Giesbrecht, headnerd@nerdiosity.com

The Go Programming Language. (n.d.). Retrieved from

https://golang.org/doc/faq#history

Toal, Ray. Classifying Programming Languages [Blog Post]. Retrieved from

http://cs.lmu.edu/~ray/notes/pltypes/

Torres, Alissa (2014, August). Incident Response: How to Fight Back [PDF

document]. Retrieved from https://www.sans.org/reading-

room/whitepapers/analyst/incident-response-fight-35342

Turner, James (2010, June 22). Does the world need another programming

language? [Blog post]. Retrieved from http://radar.oreilly.com/2010/06/does-the-

world-need-yet-anothe.html

Vanderplas, Jake (2014, May 9). Why Python is Slow: Looking Under the Hood [Blog

Post]. Retrieved from https://jakevdp.github.io/blog/2014/05/09/why-python-is-

slow/

Vehent, Julien (2015, May 29). MIG Mozilla InvestiGator: Distributed and Real-Time

Digital Forensics at the Speed of the Cloud [PDF Document]. Retrieved from

https://conferenc.hitb.org/hitbsecconf2015ams/materials/D2T2 - Julien Vehent -

Mozilla InvestiGator.pdf

Volatility Foundation (2014). Retrieved June 18, 2015 from

https://github.com/volatilityfoundation/volatility/wiki/Command%20Reference%

20Mal#psxview

Volatility Foundation (2015a). Retrieved June 18, 2015 from

https://github.com/volatilityfoundation/volatility/wiki/Command%20Reference#

pslist

Volatility Foundation (2015b). Retrieved June 18, 2015 from

https://github.com/volatilityfoundation/volatility/wiki/Command%20Reference#

pstree

Volatility Foundation (2015c). Retrieved June 18, 2015 from

https://github.com/volatilityfoundation/volatility/wiki/Command%20Reference#

psscan

Volatility Foundation (2013). About [Web page] Retrieved from

http://www.volatilityfoundation.org/#!about/cmf3

Wall, Larry. (2006, February 3). Present Continuous, Future Perfect [Blog Post].

Retrieved from http://perl.org.il/presentations/larry-wall-present-continuous-

future-perfect/transcript.html

Zaïane, Osmar (2007, November 19). Python [PDF Document]. Retrieved from

http://ugweb.cs.ualberta.ca/~c410/F07/410/presentations/ReportPython.pdf

CODING FOR INCIDENT RESPONSE: Solving the Language Dilemma 25

Shelly Giesbrecht, headnerd@nerdiosity.com

Appendix

A. List of Languages

Language Current Version URL
Perl 5.22.0 https://www.perl.org/index.html

Python 2.7.10, 3.5.0b2 https://www.python.org/

C# 5 https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx

PowerShell 5

https://technet.microsoft.com/en-

US/scriptcenter/dd742419.aspx

Go 1.4.2 https://golang.org/

B. List of Tools

Tool Language
Current
Version URL

RegRipper Perl 2.8 https://regripper.wordpress.com/

Volatility Python 2.4 http://www.volatilityfoundation.org/

ShellBagsExplorer C# 5 http://binaryforay.blogspot.ca/p/software.html

Kansa PowerShell - https://github.com/davehull/Kansa

Mozilla InvestiGator Go - http://mig.mozilla.org/

