
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Security Leadership Essentials for Managers (Cybersecurity Leadership 512)"
at http://www.giac.org/registration/gslc

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gslc

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security
Scan at a Time

GIAC (GSLC) Gold Certification and ISE 5501

Author: Jon-Michael Lacek, jon-michael.lacek@student.sans.edu
Advisor: David Fletcher

Accepted: 8/22/2019

Abstract

Information Security has always been considered a roadblock when it comes to project
management and execution. This mentality is even further solidified when discussing
Information Security from a DevOps perspective. A fundamental principle of a DevOps
lifecycle is a development and operations approach to delivering a product that supports
automation and continuous delivery. When an Information Technology (IT) Security
team has to manually obtain the application code and scan it for vulnerabilities each time
a DevOps team wants to perform a release, the goals of DevOps can be significantly
impacted. This frequently leads to IT Security teams and their tools being left out of the
release management lifecycle. The research presented in this paper will demonstrate that
available pipeline plugins do not introduce significant delays into the release process and
are able to identify all of the vulnerabilities detected by traditional application scanning
tools. The art of DevOps is driving organizations to produce and release code at speeds
faster than ever before, which means that IT Security teams need to figure out a way to
insert themselves into this practice.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

2

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

1. Introduction
The DevOps process is steadily gaining popularity throughout organizations;

however, IT security continues to remain absent within the process. There have been

several studies, such as the Ponemon Institute survey and Gartner that indicate the

security tools available are too complex to integrate into a DevOps release pipeline or

that they cannot perform an adequate security assessment compared to the stand-alone

appliances.

In organizations where application security assessments are being conducted, they

are traditionally assessed towards the end of the project plan as one of the final steps

before the application is scheduled to be released. The IT security team will obtain the

source code to perform static code analysis, followed by a dynamic assessment which is

typically managed in a certification environment where the application has been built and

deployed. The results of these scans are then compiled and presented to the application

developers. At this point, the development team and security team collaborate to

understand the vulnerabilities presented in the document, determine how to correct them,

and finally, estimate how quickly they can perform remediation. Project managers and

business stakeholders have a decision to make: delay the application release in order to

allow developers time to remediate or place compensating controls around the discovered

vulnerabilities, or accept the risk that the known vulnerabilities present to the

organization.

When organizations involve the IT security team early in the software

development lifecycle, the overall risk to the organization is significantly reduced. One

solution for early integration is to configure scanning tools to be utilized in the DevOps

pipeline build and release process. Not only will security teams be involved from the

beginning, but this integration will now produce a continual feedback loop for developers

each time they check their code back into their code repository. Since this option is

available in the most common release pipeline toolsets such as Jenkins, Azure DevOps,

or AWS, why has the practice of securing an application not become a standard exercise

across all organizations with a DevOps culture?

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

3

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

The research presented in this paper will explore the work effort needed to

integrate some of the existing application scanning extensions available in the most

frequently used DevOps pipeline release products. It will also evaluate the quality of

scanning that they provide compared to the tools used in a traditional source code and

dynamic analysis engine.

2. Literature Review
The digital transformation is well underway across all business verticals, and the

culture of DevOps is at the heart of the movement. High performing organizations, such

as Google, Amazon, Facebook, Etsy, and Netflix, are routinely and reliably deploying

code into production hundreds, or even thousands, of times per day, using the Continuous

Integration Continuous Deployment (CI/CD) methodology (Kim, Debois, Willis,

Humble, & Allspaw, 2017). How do organizations continue to create new applications or

integrate feature enhancements to existing applications and deliver them at such a rapid

pace all while ensuring the deployed code does not contain any vulnerabilities? A

continual feedback loop is the cornerstone of the Agile development process. Therefore,

when executed correctly, developers will continually receive feedback on the

vulnerabilities present in their code. This new feedback loop will slowly change the

security mindset of the developers, consequently making secure coding a fundamental

skill within the organization, and thus creating a culture commonly referred to as

DevSecOps.

While executives strive for and expect the continual growth of application

deployments and feature updates, they, for the most part, are aware of the security

concerns with such a rapid deployment schedule. Of the C-suite respondents surveyed in

the State of DevOps report, 64 percent believe security teams are involved in technology

design and deployment versus 39 percent of respondents whose primary role is that of an

individual contributor at the team level (“State of DevOps Report”, p. 6). To address this

gap and offer solutions, it is suggested that “The best way to get everyone on the same

page is through reinforcing the DevOps pillars of automation and measurement.

Automated systems enable better reporting of metrics that can be shared across the

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

4

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

business” (“State of DevOps Report”, p. 6). To start gathering metrics related to the

overall security of the deployed applications, organizations need to automate the scanning

process. The only way to gather comparable, consistent metrics is to integrate the

application scanning tools into the CI/CD pipeline.

More than ever, effective management of technology is critical for business

competitiveness. For decades, technology leaders have struggled to balance agility,

reliability, and security (Kim, Debois, Willis, Humble, & Allspaw, 2017). With 87

percent of people surveyed in the Ponemon survey believing that digital transformation is

essential to business, and 63 percent stating that IT security is essential to supporting

innovation with minimal impact on the goals of digital transformation, why are security

tools missing in the CI/CD pipeline (“Ponemon Survey”, p. 14)?

One of the challenges presented in the Ponemon survey was that a barrier to

achieving a secure digital transformation process was due to the complexity of the

business processes, which 56% of respondents supported. Additionally, 44% reported

that there is a lack of adequate security technology solutions available to successfully

inject IT security into the continual release life-cycle (“Ponemon Survey”, p. 7). The

good news for the IT security community is that effectively delivering DevSecOps has

been one of the fastest-growing areas of interest of Gartner clients. These concerns

illustrate the need for a culture shift within the IT security field. Integration, however,

cannot continue to start at the end of the Software Development Life Cycle (SDLC), as it

has traditionally. If IT security teams want to partner with businesses, they must not

continue to be a roadblock. Information security must adapt to development processes

and tools, not the other way around (MacDonald, 2017).

This study aims to demonstrate that the complexity of integrating the necessary

tools in a CI/CD pipeline is no greater than the time or expertise needed to provide a

security assessment of a web application when performed independent of the deployment

of that same application. Moreover, “when security is integrated into the DevOps culture,

high performing teams spend 50 percent less time remediating security issues than low

performers. This is because they build security into the SDLC in contrast to retrofitting

security at the end” (“State of DevOps Report 2018”, p. 72).

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

5

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

By enabling the automation of static and dynamic analysis tools in a release

pipeline, development teams automatically receive the vulnerability information present

within their code each time the application is checked into its repository or sent through

the build and release pipelines. The time savings realized when utilizing this process is

two-fold. First, developers will be able to deploy applications or feature releases quicker

as their secure coding skills increase. Security analysts can now spend their time on

dynamic assessment, ethical hacking or red teaming instead of using their time

continually configuring tools to scan applications. Perhaps the greatest benefit isn’t the

time savings itself, but rather that application scanning is taking place daily, at minimum,

rather than only during the times IT security teams are made aware of application or

feature releases and are given the appropriate amount of time to assess those

deployments.

3. Research Method
3.1. Lab Design

This research is being conducted using the Microsoft suite of tools available in the

Azure cloud. An Ubuntu server has been created to host an application. WebGoat, “a

deliberately insecure web application” (OWASP.org), will be used as the application to

evaluate the Azure DevOps pipeline extensions capabilities. The testing will include both

the static code analysis along with the dynamic application scanning aspects that IT

security analysts typically take when evaluating the overall security of a web application

that is ready for consumption by the customer.

Static code analysis will be conducted during the build process, while the

dynamic application scan will take place during the release pipeline. The configuration of

the build pipeline references the WebGoat code repository which has been downloaded

and stored in the Azure Git repositories for analysis. When the application is configured

to be deployed, a Docker container will be utilized to run WebGoat on a virtual Ubuntu

server in the Microsoft Azure Portal. The OWASP Zed Attack Proxy (ZAP) has been

installed on a second Ubuntu server. The ZAP tool will be configured to point to the

deployed WebGoat URLs for application analysis.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

6

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

3.2. Testing Methodology
3.2.1. Establishing a build and release baseline

Establishing a baseline requires measuring the time it takes to build and release

the WebGoat application without tying in any security extensions. WebGoat will be

compiled using the Maven extension, “a tool that can now be used for building and

managing any Java-based application” (“Apache Maven Project”, 2019). Once built,

security extensions such as SonarQube and ZAP will be integrated into the pipeline

configurations to automatically evaluate the application from a static code analysis

standpoint, as well as a dynamic analysis standpoint while it is in the process of

deployment.

The first phase in the pipeline release process involves the build of the

application. The WebGoat version 8.0 application files have been downloaded and stored

in a Microsoft Azure Git repository. The build pipeline is configured to reference this

code repository and compile the application. See Appendix 1 for the overview of the

configuration. Capturing the time to build WebGoat without any static code analysis

taking place establishes the baseline. The Microsoft Azure DevOps pipeline interface

provides timings for each step in the build process, which takes approximately 3 minutes

and 29 seconds to compile, as shown in Figure 1 below.

Figure 1. Baseline build pipeline results.

The application is then deployed using the Azure DevOps release pipeline

configuration to a virtual Ubuntu 18.04 server in the Microsoft Azure cloud. See

Appendix 2 to view the release pipeline configuration for this stage. This configuration

references a docker-compose.yml file that is used to deploy the WebGoat application in a

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

7

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Docker container hosted on the virtual Ubuntu server. When initiated, this process takes

approximately 28 seconds, as shown in the figure below.

Figure 2. Baseline release pipeline results.

3.2.2. Establishing a ZAP scan baseline
At this point, the WebGoat application is running in a container on a VM. The

installation of the OWASP Zed Attack Proxy takes place on a second virtual Ubuntu

18.04 server running in the Microsoft Azure portal. The configuration of the proxy is then

conducted to reference the WebGoat application previously installed and referenced in

Section 3.2.1. Figure 3 depicts the two virtual Ubuntu servers hosted within the Azure

cloud with one server hosting WebGoat and the other hosting ZAP. This process is what

is typically involved in a traditional means of dynamic application scanning where IT

security analysts are provided with the web applications URL for configuration and

analysis within the application scanning tool.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

8

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Figure 3. Virtual servers with hosted applications in Azure cloud

The WebGoat application is composed of two applications that interact with each

other, http://host_ip_or_dns-name:8080/WebGoat/ and http://host_ip_or_dns-

name:9090/WebWolf/. When the ZAP tool is configured to point to those URLs and

perform a spider of the sites, followed by an active scan, the following results are

obtained.

Time to spider the WebGoat application 20 seconds

Time to scan the WebGoat application 1 minute, 56 seconds

Time to spider the WebWolf application 21 seconds

Time to scan the WebWolf application 2 minutes, 5 seconds

Table 1. Baseline application scan results

The following chart documents the results of the active application security scan

of both applications in the Docker container:

Vulnerabilities Critical High Medium Informational Total Number of

URLs

WebGoat 2 1 3 0 11

WebWolf 2 0 0 0 5

Table 2. Baseline vulnerability scan results

3.2.3. Automatic Build Integration
With the baseline timing to build the WebGoat application established, it is time

to gather statistics indicating how much additional time static code analysis tests take

when integrating with a build pipeline. The original build pipeline configuration

referenced in Section 3.2.1 has been modified to incorporate SonarQube extensions:

“SonarQube is an open source product for continuous inspection of code quality”

(Dockerhub.com). Since WebGoat is a Java-based application, SonarQube was chosen as

the Azure pipeline extension to utilize. See Appendix 3 to view the pipeline configuration

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

9

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

used in this analysis. To find additional static code analysis applications, visit

www.owasp.org/index.php/Static_Code_Analysis. The list presented on the OWASP site

provides the available coding languages that are supported by each tool.

When this build process starts, the Prepare analysis on SonarQube, Bash Script,

and Publish Quality Gate Result steps are the additional steps configured in the pipeline.

The Maven pom.xml step includes a checkbox that could integrate directly with

SonarQube. However, to capture the additional time introduced to the build process for

this research, the SonarQube integration commands have been configured using the Bash

Script step.

Figure 4. Build pipeline results with SonarQube integration.

As Figure 4 demonstrates, integration with SonarQube only takes an additional 75

seconds in this build pipeline. The steps required to prepare SonarQube and reconfigure

the build pipeline to publish the testing results to the SonarQube portal cannot be

captured systematically. The steps needed for initial integration include deploying a

SonarQube server, or virtual instance of SonarQube, configuring a new project within

SonarQube, and obtaining the necessary code snippet that is needed for configuration into

the build pipeline for integration. Deploying and configuring a SonarQube server is a

one-time setup. Configuration of each project pipeline that organizations are looking to

integrate occurs once per project. After connecting the SonarQube project within each

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

10

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

application pipeline, developers now have the benefit of continually receiving feedback

about their code immediately after the completion of the build process.

Now that the SonarQube extension has been configured to integrate with the build

pipeline, the build is initiated and then completes which subsequently publishes the

results of the static code analysis to the SonarQube project page. Developers now have an

extremely easy-to-use tool that describes what the problem is, why it is a problem, and

the location of that problem within the code.

Figure 5. Results of WebGoat static code analysis

As depicted in Figure 5, developers have a summarized view of issues within their

application. The SonarQube extension evaluates the application and documents any piece

of code that breaks a coding rule within its analysis. The evaluation of the application's

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

11

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

code is broken down into one of three categories. These categories are bugs,

vulnerabilities, and code smells (SonarQube Resources). A bug is a problem within the

code that will break the application, while a vulnerability is a point in the code that is

open to attack. An algorithm is then used to generate the report and assign an overall

grade to the application. While the scores will be interpreted differently across

organizations, it is important to note that the developer now has a tool that provides

immediate feedback each time the code is built. Tools like SonarQube provide resources

to understand why that particular coding practice creates a vulnerability or bug and

examples on how to correct the problems detected within the code. By repetitively

reviewing problems within their code, over time, developers will change their poor

coding habits.

In addition to the benefits realized from an application security perspective, most

of the pipeline extensions provide valuable reports that contribute to enhancing the

quality of the application in development. The SonarQube extension contains a section

referred to as code smells, which highlights segments of the code that are confusing and

difficult to maintain. The technical debt feature estimates the time it would take to correct

the code smells. Code coverage test results is another extremely beneficial practice that

should be exercised in a DevOps pipeline process as organizations mature. The more

testing that takes place against specific variables, functions, or subroutines, the lower the

chance of running into a previously undetected bug. The final measurement provided in

Figure 5 is duplications. This metric captures the amount of repetitive code used

throughout the code base, which plays a critical role in identifying where poor coding

practices have sprawled throughout the application.

3.2.4. Automatic Release Integration
After the completion of the build process, a release pipeline can be constructed to

deploy those artifacts. The WebGoat application will be deployed using a container to

demonstrate the various options available in common pipeline toolsets, not the artifacts

previously created in Section 3.2.3. Figure 6 shows the screenshot of the pipeline

configuration with the addition of the ZAP baseline stage that deploys and utilizes the

OWASP ZAP Docker image for application scanning.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

12

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Figure 6. Azure release pipeline with application scanning tool integration

After the application has been successfully deployed in the first stage of the

release, the initiation of the baseline scan takes place within the second stage, named

Baseline ZAP Scan. This scan will first spider the site, followed by an active scan. As

shown in Figure 7 below, the log messages within the console contain the results of the

scan in the form of warnings. See Appendix 4 for the commands used to initiate the

Docker scan within the release pipeline.

Figure 7. Output from the ZAP active scan initiated from the release pipeline.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

13

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

 The commands used in the scan steps above combined the spidering of the URLs

along with the scanning of the site. The addition of this stage adds a total of 3 minutes, 35

seconds to the release pipeline as shown in Figure 8.

Figure 8. Results of each phase of the release pipeline.

The following two charts show the time taken to scan each application along with

the number of vulnerabilities discovered for each URL. By default, the vulnerability

results of the integrated scan do not provide the severity levels. Instead, the console logs

include a warning message with the name of the vulnerability discovered along with the

URL where it exists. Security analysts can modify a configuration file that allows for the

configuration of warning types to better align with their organizational goals. This

research will utilize the default configuration to measure the number of vulnerabilities

discovered for each of the two applications.

Time to spider and scan the WebGoat application 1 minute, 49 seconds

Time to spider and scan the WebWolf application 1 minute, 28 seconds

Table 3. Application spider and scan timings.

 Number of Vulnerabilities Discovered Number of URLs

WebGoat 4 10

WebWolf 3 9

Table 4. Application vulnerability count in automated pipeline integration.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

14

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

4. Findings and Discussion
The results of the testing conducted in this research confirmed the hypothesis that

the tools available in CI/CD pipelines have the same capabilities that stand-alone

products have. Additionally, the time needed to integrate these tools is not significantly

shorter or longer than the manual scanning methodology that traditional security teams

utilize.

The success of integrating application scanning extensions within a CI/CD

pipeline hinges on a well-planned process. The research conducted here demonstrated

easy-to-accomplish steps to determine the work effort needed for organizations to make

the leap and start integrating security tools into their application development pipelines.

Once the integration of security tools into the DevOps pipelines conclude, security

analysts have the ability to continue to enhance the scanning capabilities and the actions

taken as a result of those scans. This configuration brings security into the CI/CD

pipeline process by allowing them to continue to build upon the basic scanning tests

conducted in this research.

Much like the developer of the applications utilizing a CI/CD pipeline, the

security analysts responsible for integrating these extensions will continually be able to

introduce enhancements in the form of advanced application checks. Accomplishing

these enhancements starts by thinking about how a security analyst typically scans an

application from the manual scan standpoint. When manually scanning, application

security analysts use results displayed in the GUI from different portions of the scan to

pivot to a more in-depth analysis of the code. For example, when starting an application

scan, a security analyst may typically spider the application. Using the results of the

spider, the analyst may then choose to attack each of the URLs detected. The next step

may be to use the discovered forms and begin to fuzz the fields available. These steps

would then correlate to the continued evolution of the security scanning within the CI/CD

pipelines.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

15

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

4.1. Baseline Comparison Timing
The captured timings in this research focus on the difference in the time it takes

for a build and release pipeline to complete both before and after implementing

application scanning extensions. The results of this testing introduced an additional 38

seconds to scan the application code and 36 seconds to publish those results to the

SonarQube extension, for a total of 1 minute, 14 seconds.

There isn’t a consistent and repeatable method of establishing data that depicts the

time needed to configure the initial connection from an application scanning tool to the

application being scanned using the traditional means of dynamic code analysis. The

steps typically involved in that process include a security analyst obtaining the URL the

web application resides, opening their application scanner of choice, creating a project,

configuring the new project with the corresponding settings such as URL and finally,

launching the scan. Within a CI/CD pipeline, the analyst would obtain the web

application URL, open the CI/CD pipeline tool, add the extension that integrates the

application scanner of choice with the application to be scanned and add the command

line syntax to the extension.

Although there is no significant difference in time between the traditional

application scanning configuration versus the initial CI/CD configuration, a notable

amount of time will be saved from that point on. Since the execution of the application

scanning extension will be performed each time the application is deployed, there are no

future time requirements involved. On the contrary, notification of each release must

include IT security, giving them time to analyze the new code if organizations continue to

use the traditional method of analysis. Historically, IT security teams are left out of future

releases to existing applications, which can present a significant risk to the organization if

vulnerabilities are introduced to the code.

4.2. Baseline Vulnerability Comparison Counts
The testing captured in this research compared the use of the ZAP tool used in a

traditional means of dynamic code analysis compared to the integration within a CI/CD

pipeline. The testing captured the time taken to spider the application URLs, perform an

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

16

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

active scan on each URL, and finally, the number of vulnerabilities discovered within the

applications. The following charts compare the baseline times to the integration of the

security scanning tools to the release pipeline, while the second chart summarizes the

number of vulnerabilities discovered using the stand-alone client versus the command

line integration conducted within the release pipeline:

 Baseline timing ZAP integration timing

Time to spider and scan the

WebGoat application

2 minutes, 16 seconds 1 minute, 49 seconds

Time to spider and scan the

WebWolf application

2 minutes, 26 seconds 1 minute, 28 seconds

Table 5. Application spider and scan comparison timings.

 Number of Vulnerabilities Number of Vulnerable URLs

 Stand-alone Pipeline Stand-alone Pipeline

WebGoat 6 4 11 10

WebWolf 2 3 5 9

Table 6. Application vulnerability scan comparison timings.

Although the numbers are not identical, this testing confirms similar functionality

exists between the client version of the ZAP tool on a stand-alone server, versus the

dynamic integration using a temporary container in the CI/CD pipeline process. This step

might be the most significant change to the interaction between the development and

security teams. When security analysts utilize the client version of ZAP, the application

scanning methodology and tests might not follow the same process each time due to a

number of different variables. For example, one inconsistency could be the interpretation

of the returned results by the security analyst performing and reviewing the scan. An

important point to note is that organizations would need to adopt a mentality that the

integrated application scanners in the CI/CD pipeline would be evaluating the most

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

17

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

common, well-known vulnerabilities and common coding mistakes. Understanding this

would allow security analysts to dedicate more time to the in-depth functionality testing

of the application while knowing that the baseline scan remains consistent during each

scan.

4.3. Enhanced Vulnerability Scans
As organizations continue to mature in their DevOps initiatives, the capabilities

within their pipelines continue to grow. Maturity comes in the form of unit testing that is

built out to ensure functionality within each aspect of the code or in the logic of the gates

between each stage in a pipeline. Incorporating this mentality from a security perspective

requires a strong partnership with the development teams whose goal continues to be to

deploy application and feature updates regularly. A good starting point would be the

integration of the analysis tools into the pipelines without impacting the build and release

functionality. This step would be to gain visibility to the vulnerabilities and poor coding

practices that exist in the application. When development teams have had a chance to

review the output of the scans and consult with security analysts to understand and

correct the vulnerabilities, a decision should be made to implement a gate that would fail

the progression to the next stage in a pipeline should a vulnerability be detected.

An additional benefit of integration within a CI/CD pipeline is for applications

that are not released on a regular or frequent cadence. Security analysts could work with

the developers to set a scheduled release, which would trigger the application scan

extensions. This re-occurring schedule would not impact the functionality of the

application since the source code has not changed. Many of the dynamic code analysis

tools, including ZAP, are continually developing the tests that are executed within their

scans to look for the up-to-date vulnerabilities discovered in the wild. For example, after

the identification of the Heartbleed vulnerability, the ZAP community configured tests

into the active scanner functionality to test each application it scans for its presence. If a

pipeline is configured using security extensions and is set to release on a regular

schedule, even if there have not been any changes to the code, notification would be sent

to the developers if their application is vulnerable to the newly discovered vulnerability.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

18

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Another benefit of integrating security tools in the CI/CD pipeline is how the

notification of vulnerabilities within an application can be configured. Many of the

extensions have built-in functionality that integrates back into the tools that Agile teams

use to manage their work. For example, in the Microsoft Azure DevOps toolsets, security

analysts have the option of automatically creating work orders or bug items for each

detected vulnerability and placing them in the developer's list of backlog tasks. Using this

capability will help drive the adoption of integrating security into the DevOps culture.

Developers will be far more likely to address the vulnerabilities within their code if they

don’t need to take manual steps to review and understand the discovered vulnerabilities.

The extensions available provide the details about the vulnerability, which include

resources on how to correct them.	

5. Recommendations and Implications
Organizations responsible for delivering a secure product must integrate

application scanning extensions into their DevOps pipelines. Like the DevOps process,

this culture change is a slow continual process. Integrating static and dynamic code

analysis tools can and should be implemented over time as the culture shifts within the

organization.	

5.1. Recommendations for Practice
DevOps pipelines have a wide variety of control mechanisms within them that

control the progression of an application through the pipeline. The concept of gates,

which are configured to control whether or not the next stage of the pipeline can start,

should be utilized as a maturity mechanism. As organizations begin introducing the

security tools into their release pipelines, they could decide to configure the extensions

passively. Using this methodology, organizations can automate the analysis of the source

code and the scanning of the application, all while still allowing the release of the product

to the customers. Reports are generated as a result of the security extension integration,

allowing development teams time to review the vulnerability reports. Developers and

security analysts can then prioritize them accordingly within their backlog of work.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

19

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

 As teams mature and become comfortable with the use of these application

scanning extensions, the release pipelines should be reconfigured to fail when an

application release does not meet a predetermined set of criteria, or risk acceptance, as a

result of the scan. For example, if you are a financial institution deploying an application

responsible for sending and receiving funds electronically, you may decide that the

results of the application scans should contain no known vulnerabilities of any severity. If

there is a discovery of any vulnerability during the build and release process, the

deployment should fail. However, if you are a marketing firm, you may be willing to

accept the risk that informational, low, or medium severity vulnerabilities present in your

application, while only failing the release upon the discovery of a critical or high

vulnerability.

 The development of security-related extensions within the most common DevOps

pipeline tools continues to evolve. Automatic integration into an Agile process is a must

if the DevOps culture will include security. Many of these extensions can be configured

to automatically integrate with the Agile methodologies such as work orders, user stories,

and bug fixes that get mapped out on a Kanban board. An example of this is the advanced

integration of the OWASP ZAP extension. Pipeline administrators can configure the

pipeline to automatically create individual work orders or bugs for each vulnerability

detected within the developer's backlog as part of their code development. This automatic

process becomes invaluable in terms of time savings while helping to provide input to the

continual feedback loop that ensures the release of application features continue in a

timely and secure manner.

5.2. Implications for Future Research
As security scanning tools begin making their way into the software development

life-cycle, they will start to gain the attention of developers that may have previously

discounted their importance. As teams mature and the use of these tools shift left in the

SDLC, developers will begin to understand the best practices of secure coding through

on-the-job training. This research was unable to capture the time saved for building an

application that incorporates application scanning from the start, rather than at the end.

Measurements could be taken to indicate the amount of time needed to correct a

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

20

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

vulnerability discovered in code and then multiply that out across the application for how

many times the utilization of that coding style was employed. If the development of

methods or functions occurs in an insecure manner, the developer would be made aware

of that poor coding practice after checking their code into the code repository for the first

time, rather than at the end of the applications development where that coding practice

may have sprawled throughout numerous other methods or functions. 	

6. Conclusion
Changing the culture in any organization involves the commitment of multiple

teams and doesn’t happen overnight. With the tools available today and the desire to

continually release applications or feature updates to existing applications at an

increasingly rapid pace, the IT security community must help keep those applications and

the data they process safe and secure. By leveraging the available CI/CD pipeline

extensions, organizations can start integrating a security mindset in the DevOps process

and put secure coding at the forefront in the minds of the developers. Achieving this must

and can be accomplished without forcing developers to abandon their continuous

integration continuous deployment tools they are accustomed to today.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

21

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

References

2018 State of DevOps Report. (n.d.). Retrieved from

https://puppet.com/resources/whitepaper/state-of-devops-report

Azure Resources. (2019). Retrieved from https://docs.microsoft.com/en-

us/azure/devops/?view=azure-devops

Apache Maven Project. (2019). What is Maven?. Retrieved from

https://maven.apache.org/what-is-maven.html

Docker Hub. (n.d.). Retrieved from https://hub.docker.com/

Kim, G., Debois, P., Willis, J., Humble, J., & Allspaw, J. (2017). The DevOps handbook:

How to create world-class agility, reliability, and security in technology
organizations. Portland, OR: IT Revolution Press, LLC.

MacDonald, N., Head, I. (2017) 10 Things to Get Right for Successful DevSecOps.

Retrieved from https://www.gartner.com/document/3811369

OWASP WebGoat Project. (2019). Retrieved from

https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project

OWASP Zap Attack Proxy Project. (2019). Retrieved from

https://www.owasp.org/index.php/Category:OWASP_WebGoat_Project

Ponemon Institute – Bridging the Digital Transformation Divide: Leaders Must Balance

Risk & Growth (2018) Retrieved from
https://www.ibm.com/downloads/cas/ON8MVMXW

SonarQube Resources. (2019). Retrieved from https://sonarqube.org/features/integration/

Veracode State of Software Security Report: Focus on Industry Verticals. (2018).

Retrieved from https://info.veracode.com/analyst-report-devsecops-global-skill-
survey.html

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

22

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Verizon. (2019). Data Breach Investigations Report. Retrieved from Verizon website:

https://enterprise.verizon.com/resources/reports/2019-data-breach-investigations-

report.pdf

	

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

23

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

Appendix

1. Build pipeline policy configuration. The Get Sources step is configured to

reference the WebGoat application files stored in a Git repository. The agent step is the

integration needed to tell the pipeline where to build the code in the Microsoft Azure

cloud. This phase connects to an Ubuntu virtual machine in the Microsoft Azure Portal.

The final stage, Maven pom.xml, is the step that compiles the Java-based WebGoat

application.

2. Release pipeline policy configuration. The Deployment group job step is

configured to point to the previously constructed Ubuntu server. The Copy Files to: step

copies the artifacts needed to start the application on the Ubuntu server, and the final

phase Command Line Script initiates the command to start the application, which is

docker-compose up -d.

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

24

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

3. SonarQube pipeline extension integration. The Prepare analysis on

SonarQube step performs a quick check against the configured SonarQube server that is

configured within this stage. The Maven pom.xml step compiles the application code

followed by the Run Code Analysis step that performs the SonarQube static code

analysis. The Bash Script is used to update the SonarQube project with the results of the

scan, and the Publish Quality Gate Result is used to provide the Boolean condition back

to the pipeline indicating whether or not the code quality met the acceptable threshold.

4. Commands used for ZAP scan via a Docker instance. The following three

commands correspond to the three command line steps in the diagram below:

docker pull owasp/zap2docker-weekly

docker run -t owasp/zap2docker-weekly zap-full-scan.py -t

http://10.0.0.7:8080/WebGoat/

docker run -t owasp/zap2docker-weekly zap-full-scan.py -t

http://10.0.0.7:9090/WebWolf/

© 20
19

 The
 SANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2019 The SANS Institute Author retains full rights.

Changing the DevOps Culture One Security Scan at a Time

25

	

Author	Name,	email@address	jon-michael.lacek@student.sans.edu	
	 	 	

