
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

Monitoring Baselines with Nagios

GIAC GSNA Gold Certification

Author: Steven Cardinal, steven.cardinal@gypsywagon.com

Advisor: Richard Carbone

Accepted: February 1, 2015

Abstract

System administrators have many tasks, from maintaining uptime to preparing for
disaster. They must also ensure systems adhere to security guidelines such as the DoD's
Security Technical Implementation Guides (STIG). Other than an audit, which most
system administrators dread, how can one be sure systems remain in compliance while
attentions are focused on day-to-day maintenance tasks? Monitoring – and Nagios
provides that with customization options that let a user monitor changes to baselines on
remote systems. This paper will focus on monitoring Windows and Linux baselines. It
will look at using the Nagios Cross Platform Agent (NCPA) to perform checks between
the Nagios server and the monitored hosts as well as looking at some sample, custom
scripts to be used for checking configuration settings.

Monitoring Baselines with Nagios 2

Steven Cardinal, steven.cardinal@gypsywagon.com

1. Introduction
It is 4:00 on a Friday afternoon and you, a system administrator for a large,

multinational entertainment company, are putting your things away to head out for a long

holiday weekend. When your desk phone rings, you get a sudden sinking feeling; this

does not bode well for your immediate future. Answering it, you hear the frustrated voice

of a senior manager. He needs to get a report out to a customer before the end of the day

and the new system is telling him “access denied.”

Troubleshooting this new reporting system could take a considerable amount of

time, something neither you nor the angry manager have. You make the decision to relax

the permissions in the application so that the report can be generated. You vow to put the

time and effort into a better solution when you come back on Tuesday.

When Tuesday comes, however, your task list expands as all of the normal,

automated jobs for Monday failed because of the holiday. The day-to-day operations

continue to take precedence, and the CRM fix gets pushed further and further down the

list. Eventually it is forgotten, as the CRM system is running trouble-free. The risk,

however, remains. It may be discovered during the annual audit, or it may be discovered

by actors of a less savory sort.

Similar scenarios take place throughout businesses everywhere. Information

systems are taking on greater complexity while administration resources are stretched

thin. Personnel are being asked to work more hours to support more systems. According

to the Occupational Outlook Handbook (Bureau of Labor Statistics, 2014), published by

the US Department of Labor’s Bureau of Labor Statistics, about 25% of system

administrators work more than 40 hours per week.

Perhaps the organization has not yet implemented strong Security-focused

Configuration Management (SecCM) practices, but the administrators need to get a

handle on changes made throughout the computing environment. The National Institute

of Standards and Technology, or NIST, has stated that (Johnson, Dempsey, Ross, Gupta,

& Bailey, 2011), "these changes can adversely impact the previously established security

posture; therefore, effective configuration management is vital to the establishment and

Monitoring Baselines with Nagios 3

Steven Cardinal, steven.cardinal@gypsywagon.com

maintenance of security of information and the information system." It is therefore

critical that the organization takes steps to improve visibility of these systems.

Maintaining a secure configuration is part of The SANS Institute's Critical

Security Controls. According to Control 3 (SANS Institute, 2015), one should

"implement and test an automated configuration monitoring system that measures all

secure configuration elements that can be measured through remote testing." This further

enforces the idea that a monitoring system would be beneficial.

You consider methods to implement such a system, but prices are high, as is

complexity. You might consider doing it by hand but according to the NIST Special

Publication 800-137 (Dempsey, et al., 2011), "automated processes, including the use of

automated support tools (e.g., vulnerability scanning tools, network scanning devices),

can make the process of continuous monitoring more cost-effective, consistent, and

efficient."

You go back to your search engine of choice. You find solutions in the

marketplace, such as those from SolarWinds, Tenable, and Qualys, but you are budget-

challenged. While your audit department may have access to those tools, you would like

to know about configuration problems before they get involved.

It would be helpful if there was a way to track the baseline security of your

systems. It would be convenient to receive an alert when an unexpected change to the

security posture of a system occurs. It would be great to have such a monitoring system

that does not require a huge budget. Fortunately, there is an open source software

package, designed to run on an open source operating system that could do all this

without breaking the bank. Nagios.

Yes, that free piece of software you likely already have running to let you know

when a system goes down can be provisioned to handle this task. If you are not currently

using Nagios, you may wonder what is Nagios.

Monitoring Baselines with Nagios 4

Steven Cardinal, steven.cardinal@gypsywagon.com

2. Implementing Nagios
2.1. Nagios Implementation Overview

Nagios is an open source system monitoring application that was originally

created in 1999 under the name Netsaint. It was renamed in 2003. It consists of a core

server component, which initiates system checks using various plugins, and reports the

results through a web interface. Optionally, it can report via numerous alerting options,

such as text and email. In addition to the plugins, Nagios supports a number of different

services that can provide active and passive remote checks.

Nagios comes in both commercial and free versions, the latter known as Nagios

Core. This paper will cover the free version. Further information about the Nagios’

commercial offerings can be found at http://www.nagios.com. Please note that, although

Nagios Core v4 is now available, most major Linux distributions still ship with v3.5, and

that is what this paper will focus on.

The examples discussed in this paper are based on a test environment consisting

of three servers: a CentOS Nagios server, a CentOS webserver, and a Windows 2008 R2

server. All are running as virtual hosts atop VMWare. Each host will have its built-in

firewall enabled and configured to permit Nagios monitoring with a minimal set of open

ports.

Although there are a number of Nagios agents available for various platforms, this

paper makes use of the newer Nagios Cross Platform Agent (NCPA). This agent uses a

standard API across platforms, allowing for the uniform checking of most popular system

statistics, such as CPU, memory, and disk utilization.

Another factor in choosing NCPA is its ability to provide SSL encryption for all

network traffic between the Nagios server and the agent which requires an authentication

string before checks are permitted. Monitored systems may be transmitting sensitive

information about the configuration of critical servers and even internal networks are not

guaranteed to be secure. An article published by the Electronic Frontier Foundation

makes note of the infiltration of internal networks by government spy agencies. They

state that (Galperin & Schoen, 2013), "encryption even between the devices within a data

center may be an important precaution if the routers and switches connecting those

Monitoring Baselines with Nagios 5

Steven Cardinal, steven.cardinal@gypsywagon.com

devices can be targeted with malware." Even without fear of government spying, it is

prudent to recognize that they are not the only actors with these capabilities.

2.2. Configuring Windows
Performing checks on Microsoft Windows systems will require a mix of

PowerShell scripts and command-line utilities. While scripts using older, "DOS Batch"

commands will work, and will be used as wrappers for a number of command-line tools,

there is considerable power native to the PowerShell scripting language. This will allow a

system administrator to perform a large number of checks with a minimum of code.

When it comes to using PowerShell scripts, however, Windows ships with a

default configuration preventing their execution. According to Microsoft (Microsoft,

2014), "the execution policy is not a security system that restricts user actions… the

execution policy helps users to set basic rules and prevents them from violating them

unintentionally." Considering that a layered approach to security is a best practice, the

system will be configured to permit the execution of scripts in the most restrictive manner

available.

Enabling the Nagios agent to execute PowerShell scripts will require changing

some of the default behaviors of Windows. To permit PowerShell scripts to be executed,

the system administrator will need to change the execution policy and, since it is not

desirable to diminish the security posture of the system excessively, it will be required

that all PowerShell scripts be signed.

Signing PowerShell scripts is not particularly difficult. One could use the

Certificates MMC snap-in to generate a code-signing certificate. Moreover, it is advisable

to make the private key exportable so that the certificate can be used on multiple systems.

Begin by installing the Certificates snap-in for the Current User in MMC as shown in

Figure 1:

Monitoring Baselines with Nagios 6

Steven Cardinal, steven.cardinal@gypsywagon.com

Figure 1: Certificates MMC Snap-in

Right-click the Certificates folder under Personal and choose All Tasks ->

Advanced Operations -> Create Custom Request. Then click Next and Proceed without

Enrollment Policy and click Next. Note: If there is a corporate PKI infrastructure, there

may be preconfigured Enrollment Policies. Follow any corporate standards for

requesting a code-signing certificate.

Leave the default Template (No template) CNG key and Request format PKCS

#10 and click Next. Expand the Details of the Custom request and click Properties. Fill

out the following five screens, ensuring they meet any corporate or organizational

standards relevant to the environment, as shown in figures 2 through 6:

Monitoring Baselines with Nagios 7

Steven Cardinal, steven.cardinal@gypsywagon.com

Figure 2: Certificate General Properties

Figure 3: Certificate Subject Properties

Monitoring Baselines with Nagios 8

Steven Cardinal, steven.cardinal@gypsywagon.com

Figure 4: Certificate Key Usage Properties

Figure 5: Certificate Extended Key Usage Properties

Monitoring Baselines with Nagios 9

Steven Cardinal, steven.cardinal@gypsywagon.com

Figure 6: Certificate Private Key Properties

Click OK and save the certificate. At this point, provide the certificate request to a

CA and, when the certificate is ready, install it on the servers in the Personal area of the

certificate store. Navigate to the Personal\Certificates folder in the MMC Certificates

snap-in, choose Import, and follow the prompts. This will allow PowerShell to find the

certificate to sign the script. The system, however, will need to trust the certificate in

order to execute the script.

For an enterprise with a PKI infrastructure, the code-signing certificate will likely

be distributed via Group Policy Object (GPO) to the Local System\Trusted Publishers

folder in the certificate store. For the purposes of this paper, manually install it there.

Within MMC, add the Certificates snap-in, this time using Local Computer as the

target. Navigate to Trusted Publishers, right-click and choose All Tasks -> Import. Then

navigate to the code-signing certificate imported earlier and complete the wizard.

Now that there is a trusted signing certificate, the system administrator is ready to

sign scripts. Given a script called MyScript.ps1 in the current directory and a certificate

with the string GSNA in the Subject properties (the CN entry is shown in Figure 3 above);

this can be done using the following syntax:

Monitoring Baselines with Nagios 10

Steven Cardinal, steven.cardinal@gypsywagon.com

PS1> $codeCert = dir cert:currentuser\My | where {$_.Subject -like "*GSNA*"}

PS1> Set-AuthenticodeSignature .\MyScript.ps1 $codeCert

Note that using the above code will result in a script that will cease working

if/when the certificate expires. There are numerous timestamp options available that

should be considered for the needs of the environment, including setting the script to

never expire.

Now that there is a code-signing certificate and some signed code, the system

administrator can set the execution policy for the server. This needs to be set from within

PowerShell running with administrative privileges. Locate the Windows PowerShell

utility on the Start menu, right-click on it and choose Run as administrator. When

prompted by User Account Control (UAC), click Yes. At the prompt, execute:

PS1> Set-ExecutionPolicy AllSigned

 The system is now able to execute signed (and only signed) PowerShell scripts.

Next, install the NCPA Nagios Agent so that the monitoring server can communicate

with the Windows system and perform checks. Prior to installation, however, configure

Windows to allow the agent to run correctly. If it is not already enabled, enable the disk

performance counters, as the current installer (v1.7.2) will silently fail to install the

services if they are not enabled.

C:\> diskperf -y

Next, configure the Windows Firewall to permit communications with the agent.

It is recommended that communication to the agent be restricted to the Nagios server.

Open a Command Prompt as Administrator and run the netsh command, substituting the

IP Address for the Nagios server.

Monitoring Baselines with Nagios 11

Steven Cardinal, steven.cardinal@gypsywagon.com

C:\> netsh advfirewall firewall add rule name="Allow NCPA" dir=in action=allow
protocol=TCP localport=5693 remoteip=<nagiosip>

After downloading the latest NCPA installer from the Nagios website

(http://assets.nagios.com/downloads/ncpa/download.php), install it, providing it with an

Active Specifications Token, which is used as a form of authorization. This example uses

the following token, b14c23a71d05e69. Following a successful installation one should

see port tcp/5693 listening when netstat is run. Next, configure a Linux host to run the

NCPA agent.

2.3. Configuring Linux
First, install the NCPA Nagios Agent so that the monitoring server can

communicate with the Linux system and perform checks. After downloading the latest

NCPA installer RPM from the Nagios website, install it and then edit the configuration

file in /usr/local/ncpa/etc/ncpa.cfg. Locate the community_string entry in the [api]

section and set it to use the following token, b14c23a71d05e69. Restart the ncpa_listener

service and then permit access to the listener through the iptables firewall. As on

Windows, restrict communications to only the IP address of the Nagios server:

$ sudo service ncpa_listener restart

$ sudo iptables -I INPUT 2 -p tcp --dport 5693 –s <nagiosip> -j ACCEPT

That is all that is needed on Linux to get the agent running. Now that it is running

scripts will need to be created to perform checks and report them back to the Nagios

server.

2.4. Writing Nagios Plugins
The Nagios server expects messages from plugins to be formatted in a particular

manner. Following the guidelines published at https://nagios-plugins.org/doc/

guidelines.html, one can see that any plugin written should output a short but descriptive

Monitoring Baselines with Nagios 12

Steven Cardinal, steven.cardinal@gypsywagon.com

message that will be included in any alerts sent to monitoring personnel. Plugins must

also return an error code indicative of the service status, as shown in the following table:

Table 1: Plugin Return Codes (Nagios Plugins Development Team, 2015)

Numeric
Value

Service
Status

Status Description

0 OK The plugin was able to check the service and it appeared to
be functioning properly

1 Warning The plugin was able to check the service, but it appeared to
be above some "warning" threshold or did not appear to be
working properly

2 Critical The plugin detected that either the service was not running or
it was above some "critical" threshold

3 Unknown Invalid command line arguments were supplied to the plugin
or low-level failures internal to the plugin (such as unable to
fork, or open a tcp socket) that prevent it from performing
the specified operation. Higher-level errors (such as name
resolution errors, socket timeouts, etc) are outside of the
control of plugins and should generally NOT be reported as
UNKNOWN states.

With these guidelines in mind, a system administrator can develop numerous

scripts on both Windows and Linux to perform baseline checks and report status back to

the Nagios server.

2.5. Windows Check Scripts
Start with an example script to query a registry value. To test a registry entry

using Windows PowerShell, one can use the Get-ItemProperty of any setting. For

instance, to check that the system requires Strong Keys for NetLogon, use the following:

PS1> Get-ItemProperty -Path hklm:system\currentcontrolset\services\netlogon\Parameters –
Name RequireStrongKey

The output of this command is not Nagios-friendly, however. It does not return

data as a simple string nor with the appropriate return code. A better solution is to write a

script that outputs a simple message and an error code and let the Nagios agent pass

Monitoring Baselines with Nagios 13

Steven Cardinal, steven.cardinal@gypsywagon.com

parameters to it. For a Registry check, pass in a Registry Key, the value to check, and the

desired setting. Have an affirmative check return success and a negative check return

failure. This can be accomplished with the following bit of code:

Validate Registry Setting

Pass in a Registry key, value, and expected setting

ok: return 0

bad: return current setting

$regkey = $args[0]

$regval = $args[1]

$regset = $args[2]

$actual = (Get-ItemProperty -Path $regkey).$regval

if ($actual){

 if ($actual -eq $regset){

 Write-Host "OK"

 exit 0

 } else {

 Write-Host "WARNING - Value is $actual should be $regset"

 exit 1

 }

} else {

 Write-Host "CRITICAL - Value NOT FOUND"

 exit 2

}

Save the above code as a PowerShell script, sign it using the Authenticode

certificate, and copy it to the plugins folder in the NCPA installation (by default,

C:\Program Files (x86)\Nagios\NCPA\plugins) will make the plugin available to the

NCPA agent and, therefore, to Nagios.

Not everything can be accomplished using PowerShell, however. In Windows

2008R2, checking firewall rules still requires the use of netsh. Create a batch (.bat) script,

therefore, to execute netsh and return both a message and proper exit code. This example

will check for the presence of a custom firewall rule that permits access to a local SQL

Server installation running on the default tcp/1433. The rule is first created:

Monitoring Baselines with Nagios 14

Steven Cardinal, steven.cardinal@gypsywagon.com

C:\> netsh advfirewall firewall add rule name="Allow SQL 1433" dir=in action=allow
protocol=TCP localport=1433

Check for the existence of the rule by running:

C:\> netsh advfirewall firewall show rule ="Allow SQL 1433"

That command provides multi-line output, however. While that is convenient for

a human, it is not quite as useful for a script. A better script will check to ensure that the

netsh command does not result in an error condition, such as when an invalid rule name

is passed. If it does not result in an error, parse the output looking for the Enabled

parameter being equal to "Yes". Finally, once the script has determined the state of the

firewall rule it will return 0 for a firewall rule that is properly enabled, 1 for a rule that is

disabled, and 2 for any other error. Refer to Appendix A.1 for the complete Error!

Reference source not found. script.

Using the PowerShell and batch scripts as examples, one should be able to create

scripts to check most settings on a Windows system. One can also check the state of the

Linux systems.

2.6. Linux Check Scripts
Checking baseline settings on Linux are similarly simple and can use a variety of

scripting options. While Perl and Python are commonly used scripting languages, for this

paper the ubiquitous bash shell will be used.

As an example, this bash script will use the awk command to check a parameter

within a standard configuration file, such as sshd_config. Configuration files are typically

simple text files, many of which use a simple:

parameter value

format. For configuration files such as these, use a script that accepts the file name, the

parameter, and the expected value as inputs. Again, ensure that the output of the script

and return codes meet that expected by Nagios. The entire script can be found in

Appendix A.2 in the Error! Reference source not found. script.

Monitoring Baselines with Nagios 15

Steven Cardinal, steven.cardinal@gypsywagon.com

In this case, the CheckCfg.sh script will use awk to parse a standard configuration

file looking for the setting to be verified. The final script should make use of as much

error checking as appropriate for the environment. The purely functional bit of code looks

like this:

FILENAME=$1

PARAM=$2

VALUE=$3

awk '{ if ($0 !~ /^($|#)/ && $1=="'$PARAM'" && $2=="'$VALUE'") {exit 9} }' $FILENAME

2.7. Configure Nagios
The hosts can now be monitored: the security posture of each system has

adjustments, scripts written, and the Nagios agent configured. Without a system to

provide monitoring and alerting, though, the goal of configuration monitoring has not

been achieved. While the actual installation of Nagios Core varies from platform to

platform, the post-installation configuration is the same.

By default, Nagios is configured to require authentication to access the

monitoring console. The default user account is nagiosadmin, and this is set in file

/etc/nagios/cgi.cfg. In association with that, the Nagios website is configured in

/etc/httpd/conf.d/nagios.conf to require Basic Authentication with a user account and

password found in /etc/nagios/passwd. For simplicity, create the account using:

$ sudo htpasswd –c /etc/nagios/passwd nagiosadmin

As always, follow any corporate standards for user authentication. If Basic

Authentication is used, one should also enable Apache to provide SSL protection for the

Nagios website. That, however, is beyond the scope of this paper.

Start Apache and Nagios and make sure they are enabled upon boot. On CentOS,

the commands are:

Monitoring Baselines with Nagios 16

Steven Cardinal, steven.cardinal@gypsywagon.com

$ sudo service httpd start

$ sudo service nagios start

$ sudo chkconfig httpd on

$ sudo chkconfig nagios on

If accessing the Nagios console remotely, open a port in the firewall to permit

access. If using IPTables, the following command on CentOS should suffice. It will insert

a new rule at the beginning of the INPUT chain. Remember to add it to the configuration

to make the change permanent using the service iptables save command.

$ sudo iptables -I INPUT 1 -p tcp --dport 80 -j ACCEPT

$ sudo service iptables save

At this point, it should be possible to direct a browser to the monitoring server

using a URL similar to http://myserver/nagios. If everything is working as expected, there

will be a prompt for the nagiosadmin account and password created earlier. After

authentication, the server should display the Nagios Core home screen.

Nagios, being both complex and flexible, provides for a myriad of configuration

options. This paper uses a simple configuration for demonstration purposes. Begin by

defining two hosts to be monitored, creating a check for each host to test the scripts

created earlier, and specifying an email address to receive notifications. This last part will

be addressed first.

Using a text editor, such as vim, edit the /etc/nagios/contacts.cfg file and locate

the email setting for the default nagiosadmin account. Assuming said account was created

according to the previous instructions, setting this to a valid email address will enable

notifications. If a different account was created, update the configuration file as required

for this user. Save the file when finished.

Monitoring Baselines with Nagios 17

Steven Cardinal, steven.cardinal@gypsywagon.com

For demonstration purposes, this procedure will create a single configuration file

in directory /etc/nagios/conf.d/ to define the hosts, hostgroups, and checks. It will be

called gsna.cfg. In an enterprise environment, divide these up according to best practices.

See Appendix A.3, for the complete configuration file used.

To check hosts using NCPA, the check_ncpa.py script must be downloaded from

the Nagios Github site (https://raw.github.com/NagiosEnterprises/ncpa/master/client/

check_ncpa.py), copied to /usr/lib/nagios/plugins, and made executable (chmod 755).

Note, if SELinux is enabled, one should ensure that the label on the plugin matches those

on the other plugins. On CentOS 6, if the script is downloaded directly into the plugins

directory it is likely the label will be incorrect. To remedy this, the restorecon command

should be executed:

$ sudo restorecon -Rv /usr/lib/nagios

Once the script is installed, and any permissions adjusted, create a check

command so that Nagios knows how to initiate tests using NCPA. In the gsna.cfg file,

add the following check command:

'check_ncpa' command definition

define command{

 command_name check_ncpa

 command_line $USER1$/check_ncpa.py -H $HOSTADDRESS$ -t b14c23a71d05e69 -P 5693
-M $ARG1$ -a $ARG2$

 }

This tells Nagios that, for any host configured with a check_ncpa command,

launch the check_ncpa.py plugin passing the parameters for the host name, the Active

Specifications Token (or community_string) of b14c23a71d05e69, the port to connect to,

the API path to the check script to execute, and any arguments supplied. Add a service

statement to associate a particular check, such as the Windows Firewall check described

earlier, with a particular host. In this case, the Windows system was used:

Monitoring Baselines with Nagios 18

Steven Cardinal, steven.cardinal@gypsywagon.com

define service{

 use local-service

 host_name winserver

 service_description SQL-FIREWALL

 check_command check_ncpa!agent/plugin/CheckFW.bat!'"Open SQL
Server Port 1433"'

 }

Of particular note in this service definition is that each parameter passed to the

check_command is separated by the "!" symbol and that the parameters passed to the

PowerShell script must be both single and double-quoted. Different scripting languages

may have different quoting requirements. The Linux SSH check covered below shows

evidence of that.

Once Nagios is reloaded, to read the new configuration, it should only take a few

minutes before reporting the results. A successful check will appear as:

Figure 7: Nagios Successful Check

Monitoring Baselines with Nagios 19

Steven Cardinal, steven.cardinal@gypsywagon.com

Add an additional check command to the configuration to verify the Linux

system. The following service check will verify that the SSH server does not permit a

root login:

define service{

 use local-service

 host_name linserver

 service_description SSH-PERMITROOT

 check_command check_ncpa!agent/plugin/checkcfg.sh!'/etc/ssh/sshd_config
PermitRootLogin no'

 }

Note that for Linux systems, which are case-sensitive, NCPA represents any

installed plugins as all lowercase. So, even if a given check script is named using mixed-

case, it will need to be referenced in all lowercase in the Nagios check commands. In the

check command, be sure to use lowercase as well.

At this point, there are two hosts to monitor and a check for each of the hosts to

prove that NCPA is working as desired. Now comes the work of building all the checks

required for the environment.

2.8. Deciding What to Check
Considering that there may be hundreds if not thousands of baseline settings that

could be monitored, which are the most critical? Consider that if the site is in a U.S.

governmental organization, standards enforced via a Security Technical Implementation

Guide, or STIG, may be required. According to the Defense Information Systems Agency

(DISA), a STIG is used to provide (Defense Information Systems Agency, 2014), "secure

configuration guidance for a product to reduce the attack surface." These STIGs can be

accessed at http://iase.disa.mil/stigs. Note that some STIGs require DoD authentication

while others do not. For a private organization, those publicly available STIGs would be

a fine starting point.

Security checks within each STIG are prioritized by a Category of 1, 2, or 3 (think

High, Medium, and Low). A great place to start would be to monitor any of those settings

Monitoring Baselines with Nagios 20

Steven Cardinal, steven.cardinal@gypsywagon.com

designated Category 1. These are the types of findings that can get a system shutdown

immediately by the organization's security personnel.

What if this is not a government agency or the organization cannot (or does not

want to) use the STIGs? Starting with a Risk Assessment would make sense. Consider

the triad of security: Confidentiality, Integrity, and Availability. What are the greatest

risks to the systems in regards to these three areas?

For confidentiality, what settings have been put in place to meet the system's

needs? Checking for the use of only approved authentication mechanisms would be a

start. Check that firewall rules stay in place to ensure connectivity from only trusted

systems, when required. Also consider the password and account policies that have been

implemented. How does one make sure they have not been relaxed?

Ideally, these settings will be managed centrally, such as through Group Policy

Objects in Windows Active Directory, but what if the GPO is changed, such as in the

example scenario? An appropriately configured Nagios check will not only alert the

necessary personnel to the change, it will also keep that notification active until it is

addressed.

Integrity checks could include the results of a file integrity checker, such as AIDE

or Tripwire. In addition, checking security permissions on critical files would be a

recommended check to implement, since inappropriate permissions could lead to

unauthorized changes or system access.

If system availability is a major concern, will there be monitoring of system

patches, successfully applied or otherwise? Are system updates configured according to

an approved schedule? Are backups running as expected or did something get turned off

during a troubleshooting exercise and never turned back on again?

If using a system configuration management tool, such as Group Policy Objects

or a third party tool such as Puppet, begin by combing through the existing rules and

determine which would introduce the greatest risk if disabled or changed. Gradually

increase coverage until there is confidence that the monitoring of key security settings of

the system has been achieved.

Monitoring Baselines with Nagios 21

Steven Cardinal, steven.cardinal@gypsywagon.com

3. Conclusion
Best practices dictate that system security follows the Defense-in-Depth strategy.

What is Defense-in-Depth? The National Security Agency (NSA) defines it as (National

Security Agency, 2015), "a 'best practices' strategy in that it relies on the intelligent

application of techniques and technologies that exist today… [and] recommends a

balance between the protection capability and cost, performance, and operational

considerations." This means multiple layers of security should be implemented such that

the failure of any one control does not lead to a system breach. Such a strategy, however,

increases the complexity of a computing system and therefore increases the difficulty in

supporting that system. To reduce the accompanying strain on technology personnel,

many organizations divide the Information Technology department into silos of technical

knowledge: servers, desktops, networks, security, Windows, Linux. The list goes on and

on.

With these silos comes a decrease in business communication, and when

communication breaks down, the security of the information systems is at risk. By using

existing or easily acquired tools, each part of the IT organization can maintain visibility

of the system in a holistic manner. For the system administrator, using a free tool, such as

Nagios, can not only improve their ability to support their systems, but they can also

maintain them in such a way as to meet the expectations of other departments such as the

Information Assurance group.

If an organization is lagging in its auditing of systems and their security posture,

the system administrator may be able to help. Implementing a Nagios monitoring system,

whether the free or commercially supported version, can provide value to the department

and the organization. In a world in which IT can no longer be just a build-and-fix

department, such an administrator will be set up for future success.

Monitoring Baselines with Nagios 22

Steven Cardinal, steven.cardinal@gypsywagon.com

4. References
Bureau of Labor Statistics. (2014, December 20). Occupational Outlook Handbook,

2014-15 Edition, Network and Computer Systems Administrators. Retrieved from

U.S. Department of Labor: http://www.bls.gov/ooh/computer-and-information-

technology/network-and-computer-systems-administrators.htm

Defense Information Systems Agency. (2014, November 12). FAQs. Retrieved from

Information Assurance Support Environment:

http://iase.disa.mil/stigs/Pages/faqs.aspx#STIG

Dempsey, K., Chawla, N. S., Johnson, A., Johnston, R., Jones, A. C., Orebaugh, A., . . .

Stine, K. (2011). Information Security Continuous Monitoring (ISCM) for Federal

Information Systems and Organizations. Gaithersburg, MD, United States of

America.

Galperin, E., & Schoen, S. (2013, October 30). The PRISM is Not Enough: Government

Spies on Google and Yahoo's Internal Networks. Retrieved from Electronic

Frontier Foundation: https://www.eff.org/deeplinks/2013/10/prism-is-not-enough

Johnson, A., Dempsey, K., Ross, R., Gupta, S., & Bailey, D. (2011, August). Guide for

Security-Focused Configuration Management of Information Systems.

Gaithersburg, MD, United States of America.

Microsoft. (2014, December 3). about_Execution_Policies. Retrieved from Microsoft

TechNet: http://technet.microsoft.com/en-us/library/hh847748.aspx

Nagios Plugins Development Team. (2015, January 2). Nagios Plugin Development

Guidelines. Retrieved from Nagios Plugins: https://nagios-

plugins.org/doc/guidelines.html

National Security Agency. (2015, January 15). None. Retrieved from National Security

Agency: https://www.nsa.gov/ia/_files/support/defenseindepth.pdf

SANS Institute. (2015, January 9). SANS INstitute - Critical Security Control: 3.

Retrieved from SANS Institute web site: https://www.sans.org/critical-security-

controls/control/3

Monitoring Baselines with Nagios 23

Steven Cardinal, steven.cardinal@gypsywagon.com

Appendix A. Scripts and Configuration Files
Any scripts or configuration files that were referenced or partially covered in the

document are contained herein for completeness.

Appendix A.1 CheckFW.bat

The following is for Windows batch file CheckFW.bat, previously mentioned in this

document:

@ECHO OFF

REM

REM Validate Firewall Rule is enabled

REM Pass in a firewall rule name

REM enabled return 0

REM disabled return 1

REM Other error, including rule not found return 2

REM

SET VAL=

SET RETVAL=

netsh advfirewall firewall show rule %1 > nul

SET RETVAL=%ERRORLEVEL%

IF %RETVAL% NEQ 0 GOTO :CRIT

FOR /F "tokens=1,2" %%i IN ('netsh advfirewall firewall show rule %1') DO ^

IF "%%i"=="Enabled:" SET VAL=%%j

IF %VAL% NEQ Yes GOTO WARN

:SUCCESS

ECHO OK

EXIT 0

GOTO END

:WARN

ECHO WARN - Rule Not Enabled

EXIT 1

GOTO END

Monitoring Baselines with Nagios 24

Steven Cardinal, steven.cardinal@gypsywagon.com

:CRIT

ECHO CRITICAL - Check Failed

EXIT 2

GOTO END

:END

Appendix A.2 CheckCfg.sh

The following is for Linux script file CheckCfg.sh, previously mentioned in this

document:

#!/bin/bash

FILENAME=$1

PARAM=$2

VALUE=$3

if [-z "$FILENAME"] || [-z "$PARAM"] || [-z "$VALUE"]

then

 echo Invalid syntax

 echo Syntax $0 filename parameter value

 echo UNKNOWN

 exit 3

elif [! -f "$FILENAME"]

then

 echo $FILENAME not a file

 echo Syntax $0 filename parameter value

 echo UNKNOWN

 exit 3

else

 awk '{ if ($0 !~ /^($|#)/ && $1=="'$PARAM'" && $2=="'$VALUE'") {exit 9} }'
$FILENAME

 if [$? -eq 9]

 then

 echo OK

 exit 0

 else

 echo WARN

 exit 1

Monitoring Baselines with Nagios 25

Steven Cardinal, steven.cardinal@gypsywagon.com

 fi

fi

Appendix A.3 gsna.cfg

The following is for Nagios configuration file gsna.cfg, previously mentioned in this

document:

define host{

 use linux-server

 host_name linserver

 alias GSNA Linux Srv

 address 10.0.1.15

 }

define host{

 use windows-server

 host_name winserver

 alias GSNA Windows

 address 10.0.1.2

 }

'check_ncpa' command definition

define command{

 command_name check_ncpa

 command_line $USER1$/check_ncpa.py -H $HOSTADDRESS$ -t b14c23a71d05e69 -P 5693
-M $ARG1$ -a $ARG2$

 }

define service{

 use local-service

 host_name linserver

 service_description SSH-PERMITROOT

 check_command check_ncpa!agent/plugin/checkcfg.sh!'/etc/ssh/sshd_config
PermitRootLogin no'

 }

define service{

 use local-service

 host_name linserver

 service_description SSH-USEPAM

 check_command check_ncpa!agent/plugin/checkcfg.sh!'/etc/ssh/sshd_config

Monitoring Baselines with Nagios 26

Steven Cardinal, steven.cardinal@gypsywagon.com

UsePAM yes'

 }

define service{

 use local-service

 host_name winserver

 service_description STRONGKEY

 check_command
check_ncpa!agent/plugin/CheckReg.ps1!'hklm:system/\currentcontrolset/\services/\netlogon/
\parameters RequireStrongKey 1'

 }

define service{

 use local-service

 host_name winserver

 service_description SQL-FIREWALL

 check_command check_ncpa!agent/plugin/CheckFW.bat!'"Open SQL Server
Port 1433"'

 }

