CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

Auditing a web server - Hobbit's “webs' 1

Contents

¢ Contents

¢ |ntroduction
Motivation
Overview

o Software Auditing

Source code auditing tools

= GCC
ITSA
PScan
Scanner
Qaudit
RATS
Flawfinder
= Stanford Checker
Black box testing
= Bfbtester
= Fuzz - Woodard
= Fuzz - Maxwell
= Fuzz - Miller
Known Exploits
= Jill
= \Webscan
= Nessus
= Whisker
o Audit Results for ““webs"
Auditing tool results
= GCC
ITSA
PScan
Scanner
Qaudit
RATS
Flawfinder
Bfbtester
Fuzz - Woodard
Fuzz - Maxwell
Fuzz - Miller
Jill
Webscan
Nessus
= Whisker
Audit Evaluation
= |sit enough?
Future work
e Patch for webs.c
e Embedded web servers
« Bibliography

© SANS Institute 2000 - 2002

Jeff Schaller

July 24, 2001

As part of GIAC practical repository.

Author retains full rights.

| ntroduction

M otivation

Web servers are huge. Many people equate the Internet with websites, and for good reason - as | write this, the Google[1] search
engine reports a database of over 1.3 billion pages and Netcraft[2] reports over 29 million web sites. Web servers are also being

found in a growing number of embedded devices?. The most popular web servers today are Apache, Microsoft's 11S, and
Netscape/iPlanet. All of them are powerful and extensible programs. At the other end of the spectrum are numerous special -purpose
web servers, written to fulfill special requirements. These requirements may involve space, speed, or security.

I've become interested in special - purpose web servers while building a customized personal firewall. My requirements for the web
server are:

Size
The entire operating system should reside on one 1.44 megabyte floppy disk. A minimal kernel and filesystem leaves less than
500 kilobytes for extra programs.
Sour ce code
The code for the web server must be available for me - and others - to review for possible bugs.
Security
A minimum of known or possible bugs in the code.
Simplicity
The web server only needs to serve static files (HTML and graphics).

The speed at which the web server sends files is not a concern; about half of my target audience will be requesting the files over a
dialup connection. The firewall and web server will reside on an Intel 386 desktop, which will most likely provide most of the
performance bottlenecks. After gathering several small HTTP daemons, | discovered Hobbit's ““webs'[3]. It caught my eye for
several reasons:

Hobbit uses it to serve his content.

It redirects initial requests to an unprivileged port for the remainder of the requests, which caught me off-guard.
The comments at the top of the program claim security (safety versus HTTPS) as a goal.

The code resides in two small files: webs.c (18k) and generic.h (11k)

This article focuses on ““webs", but the tools and techniques introduced can and should be applied to other web servers.

Overview

There exist severa general web server security guidelines:

Lincoln Stein's WWW Security FAQ[4] covers both server and client security concerns.

Cheswick and Bellovin's Firewalls book[5, Section 2.8.1] includes several aspects of web services that are dangerous.
Practical Unix and Internet Security[6, Chapter 18], like Stein's FAQ, covers general aspects of server-side security concerns.
A web server should reside on a secure operating system; many guidelines exist for building them. Students of SANS courses
have done work in this area (ht t p: / / www. sans. or g/ gi act ¢/ cert . ht m), and Julia Allen's book[7, Chapters 2 and 3] isan
excellent combination of CERT's experience.

* The Web Security Sourcebook[8] includes chapters on server-side web security, and has several good concepts.

Most of these guidelines assume that the web server itself is well-written. They instead focus on other aspects, such as. securing the
operating system, writing security policies, being careful about server-side execution of programs, and configuring the web server
appropriately. These are all important concerns, but with the increasing demand for features comes larger and larger code bases for
web servers. The WWW Security FAQ explains this phenomenon as: buggy software results in security holes; large software
inevitably has some bugs; web servers are large pieces of software. Asaresult, | believe that more effort needs to be spent in
ensuring that web servers are thoroughly audited. One notable exception to the above guidelines has appeared recently. This article,
written by Mixter, provides specific suggestions for auditing C programs:. ht t p: // mi xt er. voi d. ru/ vul ns. htni .

| found examples of two different types of auditing: source code checking and black box testing. Source code checking can be
manual or automatic; experienced programmers have built up guidelines for robust ways to perform various functions. Peer review,
code review meetings, and source code checking tools incorporate this experience. Black box testing can occur once the program is
functional; various test cases are sent to the program and the results are observed. Test cases may be carefully crafted to exploit

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

known weaknesses, be examples of common usage (" beta testing"), may test protocol conformance, or send random input (" fuzz
testing").

Softwar e Auditing

Software auditing can occur at two times. before and after release to the public. Two different groups of people can conduct the
audit, depending on when it takes place. Before release, the programmer himself is the primary auditor. After release, the
programmer may continue to audit the software, but now the outside world also has a chance. There is another dimension of auditing
which differentiates the type of testing that can be done after release: whether the source code for the program is available (" open
source"). Closed source programs allow only black box testing, whereas open source programs allow source code review and
auditing tools as well as black box testing.

For example, a program might use the “gets" function to read user input. Common knowledge has it that the “"gets" function is
dangerousto use, since it does not limit the amount of input that will be assigned to the input variable. The gcc compiler will issues a
warning if a program uses the function. With a closed source program, black box testing may never exceed the finite buffer assumed
by the author of the program. However, with an open source program, even a simple tool such as ““grep" will uncover the unsafe
function call.

The following sections cover source code auditing, black box testing, and the related tools.

Sour ce code auditing tools

These tools inspect the source code of a given program for dangerous activity. Dangerous activity could include certain function
cals, function call parameters, reliance on user input, lack of error checking, and improper use of variables, among other things. All
of these activities have been shown to allow a compromise in security when exposed to hostile environments. A source code auditing
tool will flag these dangerous sections of code and possibly provide suggestions for improvement.

By their very definition, source code auditing tools are both limited in scope and reactive. They are limited by their own author's
knowledge of potentially dangerous activity in a certain language, and they are reactive because they have to be run after the bulk of
the coding has taken place. There are many source code auditing tools available and presumably many more that are not publicly
available. Tools which perform similar checks should be combined into fewer, more effective tools; this is already happening with
two of the projects. Another deficiency is false positives; these tools often have very ssimple logic for detecting dangerous activity.
The language that they are inspecting may be too complex to allow for more precise checks or external prerequisites must be met.
Unfortunately, false positives dilute the effectiveness of the tool.

There are also several subjective areas that source code auditing tools must make assumptions about. The environment of the
program can have a large impact on its expectations and use - a program that passes the audit may end up residing on an insecure
operating system. A program that fails the input validation tests may be judged acceptable in an environment where the input is
known to be safe. After al of the source code auditing tools have been run, there is an additional question: how good is the code?

The quality of a certain program is amost certainly a subjective question, but the elements of bad coding are easy to spot:
inconsistent coding style such as indentation, variable names, etc; hard-to-read formatting; inappropriate commenting; and failure to
check return codes from critical functions, to name a few. More guidelines can be found in the Appendix of Kernighan and Pike's
book[9]. All of these elements detract from the maintainability of the code, which means that the next person to make changesto it -
possibly the original author - is more likely to make mistakes. Source code auditing tools have a clear advantage over subjective
tests: they give clear indication whether the code passes or not. All of the tools listed below will complain loudly if they find
dangerous sections of code; they give little to no output when given safe code.

Other source code auditing techniques are less precise, but valuable nonetheless. Peer review and public inspection have two
benefits. The first benefit occurs before the code is released - the author typically wants to maintain a good reputation, and so is
encouraged to do a good job before presenting the program. The second benefit comes from having other people, with their differing
environments, backgrounds, and experiences review the code. Once the code is functional, having people try to use the code in their
environment often exposes it to new conditions and expectations. These new cases can illuminate errors in the origina program,
resulting in revisions that make the program more robust. Other programmers may be aware of data structures or algorithms that are
more efficient.

GCC

GCCJ[10] is produced by the EGCS Steering Committee. GCC is how an acronym for the "GNU Compiler Collection”, and it is able

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

to compile several high level languages, including C, C++, and Fortran. There are many options to influence GCC's behavior; the
following are of interest to the security community:

-Wall
Combines several other warning options that look for dangerous usage.
-Wconversion
Emit awarning if a prototype causes a type conversion that is different from what would happen to the same argument in the
absence of a prototype.
-Wstrict-prototypes
Emit awarning if a function is declared or defined without specifying the argument types.
-Wmissing-prototypes
Emit awarning if a global function is defined without a previous prototype declaration.
-Wmissing-declarations
Emit awarning if a global function is defined without a previous declaration.

| TSA

Written by John Viega, ITS4[11] scans C and C++ source code for potential security vulnerabilities. For dangerous function calls,
ITS4 outputs a short description of the problem and suggestions on how to fix the code.

PScan

Alan DeKok created PScan[12], a limited problem scanner for C source files. PScan scans C source files for printf-style functions;
these functions are susceptible to format string bugs. PScan does not check for buffer overflow errors. It works by scanning for
specific function calls with a formatting parameter that is not a static string. Any such problematic calls are flagged with their line
number and function name.

Scanner

Antonomasia (ant@notatla.demon.co.uk) wrote Scanner[13], which analyzes C source code files for file race conditions. It has a list
of file-related functions and identifiers which indicate whether the parameter(s) to the function are being checked or being used.
Parameters that are used before they are checked could be subject to race conditions. It flags any unsafe file-related operations with
the function name and line number.

Qaudit

Qaudit[14] was written by vo@fakehalo.org. It checks C and C++ code for possible buffer overflows, format bugs, environment
variable usage, and execution of other programs. Possible problems are reported by listing the filename, type of check, line number,
and the text of the offending line.

RATS

The RATS team at Secure Software Solutions wrote the Rough Auditing Tool for Security[15]. It works by scanning source code for
potentially dangerous function calls; it is provided as a starting point for a security audit. It uses an XML file of vulnerable function
calls to report dangerous usage by listing the line number and severity. Each error is followed by a short description of the possible
problem and suggestions for improvement.

Flawfinder

David A. Wheeler wrote Flawfinder[16]; it examines C and C++ source code for security weaknesses. It has a database of functions
and patterns that are common causes of security flaws. Flawfinder reports any flaws found in order of decreasing severity.

Stanford Checker

A group of students at Stanford are working on a Meta-level Compilation project[17]. The goal of the project isto alow others to
build domain- and application-specific extensions to check, optimize, and transform code. They have used these tools to audit
several systems, including Linux. They have a web page listing errors found in the Linux kernel at

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://hands. stanford. edu/ | i nux/ . Asof this writing, the tools are not publicly available.

Black box testing

Black box testing can be very valuable - it insulates the tester from detailed knowledge about the program'’s design. This environment
forces the tester to be both general and specific: genera in the sense that they do not know what assumptions and limits the
programmer put into the code. They must also be specific in their tests to trigger certain behavior in the program. Black box testing
can be separated into two types: random input (" fuzz testing”) and typical usage (" beta testing"). Fuzz testing involves sending
random inputs to the program and then watching for failure. Beta testing involves putting the program in front of typical usersand
asking them to try it out. Both methods have their benefits: fuzz testing is simple to construct, execute, and evaluate. Betatesting is
useful once the program is mostly functional; users will try the out the functionality that they expect, using the expected protocols.
This helps programmers understand which features people use; if there is an aspect of the program that is unused, it's not as
important.

Fuzz testing has certain limitations: by its natureit is not protocol -aware. Random inputs to a protocol -driven program will typically
not cause it to do anything useful; the program may have very specific requirements for the order and characteristics of the input. A
web server will respond with an error to any requests that do not comply with HTTP protocol, for example. Fuzz testing's simple
nature results in a vastly simplified evaluation criteria, however: did the program crash or not? If the program did not crash, did it
behave as expected? That is, did it consume a reasonable amount of resources - CPU time, memory, and disk space? Did it hang or
stop responding?

Fuzz testing, for al of its simplicity, has turned up surprising results. The origina ““fuzz" study[18] found bugs in over 24% of the
standard Unix utilities. A later study[19] done on a Windows system found that more than 21% of the programs crashed or hung.

Theo DeRaadt of the OpenBSD project reports the failure of severa programsin a default OpenBSD install in this article:
http://1wn. net/ 2000/ 0803/ a/ openbsdfuzz. php3.

Bfbtester

Bfbtester[20] is able to test a program'’s usage of command-line arguments and environment variables. Also included is code that
checks for a program's temporary file usage, which could be exploited by a local user. Bfbtester will report if the program crashed,
and if so, with what arguments or environment variables.

Fuzz - Woodard

This fuzz[21] project, led by Ben Woodard, tests assumptions made by the program about the size or format of its input stream. The
purpose of the project is to test common Linux utilities for bugs.

Fuzz - Maxwell

Scott Maxwell's fuzz[22] program is part of his “Bulletproof Penguin” site, which aims to apply the original fuzz project's goals to
Linux. Included on the site are patches to programs that were found to have bugs.

Fuzz - Miller

Written in 1989, the fuzz generator[23] is the original fuzz program. It was written by Lars Fredriksen, Bryan So, and Barton Miller
to test the robustness of system utilities. The fuzz program generates random characters, which are then fed to target programs. If the
target program crashes, the input and output streams are saved so that they can be reviewed.

Known Exploits

Jill

Jill isa C program that attempts to overflow an 11S 5.0 buffer, resulting in a remote command shell. The instructions say to set up a
netcat[24] listener on a certain port; if the overflow is successful, the 11S server will create a command-shell connection to that port.
Jill can be downloaded from ht t p: / / packet st or msecurity.org/filedesc/jill.c.htn.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

W ebscan

Webscan is a C program that scans a list of 1P addresses for a large list of CGI vulnerabilities. Vulnerable instances are reported in

an output file, “vuln.log". Webscan is available from ht t p: // mi xt er. voi d. ru/ fi ndex. htm .

Nessus

Nessus is a free, powerful, open source security scanner with plugin capabilities. It uses a client/server architecture to scan and report
on systems and services. Nessus provides detailed reports in various formats, grouped by system and service. Plugins are constantly
being created to scan for new vulnerabilities; many plugins exist to check for web server vulnerabilities. Nessus can be downloaded

from ht t p: / / ww. nessus. or g/ .

Whisker

Whisker was written by rfp (.rain.forest.puppy) to combine known CGI vulnerabilities with intelligent ordering, server information
recognition, and IDS avoidance. Whisker uses a perl module, libwhisker, which can be used as the engine for future CGI scanners.

Audit Resultsfor ~"webs'"

Auditing tool results
GCC

$ gcc -DLINUX -Wal |l -Wonversion -Wstri
-Whri ssi ng-decl arations -o webs webs.c
webs. c:118: warning: function declarati

ct-prototypes -Wr ssing-prototypes

on isn't

a prototype

on of function "sleep'

on isn't

on of function

a prototype

“alarm

on isn't a prototype
on isn't a prototype

as signed due to prototype

on of function
on of function
on of function

ts to

on isn't

on of
on of
on of
on of
on of

“int'

functi
functi
functi
functi
functi

on
on
on
on
on

a prototype

“read'
‘write'
“cl ose'

a prototype

“chroot’
“chdir’

“setgid
“setuid
“getuid

webs.c: In function “bail':

webs. c:126: warning: inplicit declarati
webs.c: At top level:

webs. c:138: warning: function declarati
webs.c: In function “tntravel':

webs. c:140: warning: inplicit declarati
webs.c: At top level:

webs. c: 149: warning: function declarati

webs. c: 189: warni ng: function declarati
webs.c: In function “fgetss':

webs. c: 198: warning: passing arg 2 of “fgets'
webs.c: At top level:

webs. c: 223: warning: function declaration isn't
webs.c: In function “parseurl':

webs. c: 228: warni ng: unused variable "s2'
webs. c: 228: warning: unused variable “sl'
webs.c: At top level:

webs. c: 283: warning: function declaration isn't a prototype
webs. c: 307: warning: function declaration isn't a prototype
webs.c: In function “handfile':

webs.c:337: warning: inplicit declarati

webs. c:343: warning: inplicit declarati

webs. c:362: warning: inplicit declarati
webs.c: At top level:

webs. c: 375: warning: return-type defaul

webs. c: 375: warning: function declarati
webs.c: In function "main':

webs. c:438: warning: inmplicit declarati

webs. c:441: warning: inplicit declarati

webs. c: 445: warning: inplicit declarati

webs. c:446: warning: inplicit declarati

webs. c:448: warning: inplicit declarati

webs. c:450: warning: inplicit declarati

webs. c: 474: warning: passing arg 1 of
to prototype

© SANS Institute 2000 - 2002

on of

nt ohs'

functi

on

“geteuid

with different width due \

As part of GIAC practical repository.

Author retains full rights.

| TSA

$./its4 ../../webs099/ webs.c

../../webs099/ webs. c: 105: (Urgent) fprintf
.. [../webs099/ webs. c: 106: (Urgent) fprintf
.. /../webs099/ webs. c: 107: (Urgent) fprintf
../ ../webs099/ webs. c: 124: (Urgent) fprintf
..1l../webs099/ webs. c: 288: (Urgent) fprintf
..1../webs099/ webs. c: 289: (Urgent) fprintf
.../ webs099/ webs. c: 292: (Urgent) fprintf

.../ webs099/ webs. c: 571: (Urgent) fprintf

hbn constant format strings can often be attacked.
Use a constant format string.

.../ webs099/ webs. c: 518: (Urgent) printf
Non-constant format strings can often be attacked
Use a constant format string.

/..l webs099/ webs. c: 129: (Urgent) sysl og
/..l webs099/ webs. c: 132: (Urgent) syslog
..1../webs099/ webs. c: 298: (Urgent) syslog
. 1. ./ webs099/ webs. c: 367: (Urgent) sysl og
/../webs099/ webs. c: 369: (Urgent) syslog
/../webs099/ webs. c: 485: (Urgent) syslog
.../ webs099/ webs. c: 578: (Urgent) sysl og
.../ webs099/ webs. c: 604: (Urgent) sysl og

hbn constant format strings can often be attacked.

Use a constant format string.

..1../webs099/ webs. c: 418: (Very Risky) sprintf

... /webs099/ webs. c: 430: (Very Risky) sprintf
This function is high risk for buffer overfl ows

Use snprintf if available, or precision specifiers, if available.

.../ webs099/ webs. c: 275: (Very Ri sky) strcat

.../ webs099/ webs. c: 426: (Very Ri sky) strcat
This function is high risk for buffer overfl ows

Use strncat instead

... /webs099/ webs. c: 242: (Very Ri sky) strcpy
This function is high risk for buffer overflows

Use strncpy instead.

1. ./ webs099/ webs. c: 441: (Ri sky) chdir

Can lead to process/file interaction race conditions (TOCTOU probl ens)
Mani pul ate file descriptors, not synbolic nanes, when possible

.../ webs099/ webs. c: 438: (Ri sky) chroot

Don't forget to chdir() first! Also, can lead to process/file interaction\
race conditions (TOCTOU category A)

Mani pul ate file descriptors, not synbolic nanes, when possible

.../ webs099/ webs. c: 545: (Ri sky) fdopen
Can be involved in a race condition if you open things after a poor check. For
exanple, don't check to see if something is not a synmbolic |ink before opening
it. Open it, then check bt querying the resulting object. Don't run tests on
synbolic file nanes..

Perform all checks AFTER the open, and based on the returned object, not a
synmbol i ¢ nane

... /webs099/ webs. c: 315: (Ri sky) open
Can be involved in a race condition if you open things after a poor check. For
exanpl e, don't check to see if something is not a synbolic |ink before opening
it. Open it, then check bt querying the resulting object. Don't run tests on
synbolic file names...

Perform all checks AFTER the open, and based on the returned object, not a
synbol i ¢ nane.

.../ webs099/ webs. c: 401: (Ri sky) openl og
Can lead to process/file interaction race conditions (TOCTQU category B)
Mani pul ate file descriptors, not synbolic nanes, when possible

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

..[../webs099/ webs. c: 431: (Ri sky) stat
.. /.. /webs099/ webs. c: 589: (Ri sky) stat
Can lead to process/file interaction race conditions (TOCTOU category A)

Mani pul ate file descriptors,

..1l../webs099/ webs. c: 337: (Sonme risk) read

Be caref ul

Make sure to check your

not symnbolic nanmes, when possible.

not to introduce a buffer overfl ow when using in a | oop.

buf fer boundri es.

$./pscan -w ~/proj/giac/gsnal webs/ webs. c
/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 106 Warning: fprintf uses \

non- const ant

string for format

argument 1

/ honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 129 Warni ng: sysl og uses \
non-constant string for format argument 1.

Scanner

$./scancode.plx -v -E ~/proj/giac/gsna/ webs/webs. c

Qaudit

$./qaudit.pl

gaudi t. pl::q(uick)audit:

.../ webs099/ webs. c
version[02]. by: vade79[v9@ akehal 0. org].

webs.

acl i ent
: BOF_CHK
: BOF_CHK
: BOF_CHK
: BOF_CHK
: BOF_CHK
: BOF_CHK
c:

OO0 0000

BOF_CHK

/* ITimt input
webs. c: BOF_CHK

/* "/ ul web/ bl ah"
webs.
webs.
webs.
webs.
webs.

/* just
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.
webs.

C:
C:
C:
C:
C:

C:

O0OO0O00O000000000O0

array(s) to scan:

:*NOTI CE: START: entering format bug check npde.
:*NOTI CE: STOP: exiting format bug check node.
:*NOTI CE: START: entering bounds check node.
:*NOTI CE: | NFO. charact er
redir aflgs.

: 75: unknown:
:426: unknown:
: 76: webpat h:

: 242: webpat h:
: 430: webpat h:

static char unknown[] = "(UNKNOMN)";
strcat (bbuf, unknown);

static char webpath[] = WEB_PATH;

strcpy (g, webpath);

sprintf (fbuf, "%/ %", webpath, webidx);

: 438: webpat h: x = chroot (webpath);
:491: webpat h: x = sizeof (fbuf) - sizeof (webpath) - 2;

I ength. ..
: 509: webpat h:
-> "/bl ah"
BOF_CHK: 552: webpat h:

*/

BOF_CHK: 77: webi dx: static

BOF_CHK: 275: webi dx:
BOF_CHK: 430: webi dx:

pp = fbuf + strlen (webpath);
*/

x = sizeof (fbuf) - sizeof (webpath) - 2;

char webi dx[] = WEB_I DX;

strcat (out, webidx);
sprintf (fbuf, "%/ %", webpath, webidx);

BOF_CHK: 78: bbuf: static char bbuf [BSIZE]; \
/* general -purpose big buffer */
webs. c: BOF_CHK: 337: bbuf: x = read (f, bbuf, BSIZE); \
a sinple |ockstep xfer */
BOF_CHK: 341: bbuf: p = bbuf;
: BOF_CHK: 414: bbuf: menset (bbuf, 0, BSIZE);
: BOF_CHK: 417: bbuf: pp = bbuf;
: BOF_CHK: 418: bbuf: sprintf (bbuf, "% ", aclient);
: BOF_CHK: 419: bbuf: pp += strlen (bbuf);
: BOF_CHK: 424: bbuf: strncat (bbuf, hp->h_name, 128);
: BOF_CHK: 426: bbuf: strcat (bbuf, unknown);
: BOF_CHK: 485: bbuf: syslog (LOG INFO, "% given port %", bbuf,
: BOF_CHK: 494: bbuf: pp = fgetss (bbuf, x, stdin);
: BOF_CHK: 502: bbuf: pp = parseurl (bbuf, fbuf);
: BOF_CHK: 504: bbuf: bogusurl ("first hit", bbuf);
: BOF_CHK: 555: bbuf: pp = fgetss (bbuf, x, chan);
: BOF_CHK: 559: bbuf: bogusurl ("input", bbuf);
: BOF_CHK: 578: bbuf: | p, inet_ntoa (renend.sin_addr), bbuf);
: BOF_CHK: 584: bbuf: pp = parseurl (bbuf, fbuf);
: BOF_CHK: 586: bbuf: bogusurl ("parse", bbuf);

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

unknown webpath webi dx bbuf \

I p);

Author retains full rights.

webs. c: BOF_CHK: 79: f buf : stat
webs. c: BOF_CHK: 413: f buf :
webs. c: BOF_CHK: 430: f buf : spr
webs. c: BOF_CHK: 431: f buf :

[* limt input length... */
webs. c: BOF_CHK: 502: f buf: pp
webs. c: BOF_CHK: 508: fbuf: /*
private bits ... */

webs. c: BOF_CHK: 509: f buf: pp
/* "]ulweb/blah" -> "/bl ah"

ic char fbuf [256]; /* filename buffer */

menset (fbuf, 0, sizeof (fbuf));

intf (fbuf, "%/ %", webpath, webidx);

x = stat (fbuf, &dafile);
webs. c: BOF_CHK: 491: fbuf: x =

sizeof (fbuf) - sizeof (webpath) - 2; \

= parseurl (bbuf, fbuf);

fbuf comes back with full web-tree-path. Skip our \
= fbuf + strlen (webpath); \

*/

webs. c: BOF_CHK: 512: fbuf: fbuf[0] ="/";

webs. c: BOF_CHK: 513: fbuf: fbuf[1] = "\0";

webs. c: BOF_CHK: 514: fbuf: pp = fbuf;

webs. c: BOF_CHK: 552: fbuf: x = sizeof (fbuf) - sizeof (webpath) - 2;
webs. c: BOF_CHK: 584: fbuf: pp = parseurl (bbuf, fbuf);

webs. c: BOF_CHK: 85: aclient: char aclient [64]; \

/* original client ascii-addr */

webs. c: BOF_CHK: 298: acl i ent:
webs. c: BOF_CHK: 367: acl i ent:
webs. c: BOF_CHK: 369: acl i ent:
path, y); [/* nonfatal */
webs. c: BOF_CHK: 410: acl i ent:
webs. c: BOF_CHK: 411: acl i ent:
inet_ntoa (remend.sin_addr))
webs. c: BOF_CHK: 418: acl i ent:
webs. c: BOF_CHK: 604: acl i ent:

webs. c: BOF_CHK: 7: redir: Reasonably conprehensive | ogging.

Bury redirects

aclient, bocount, reason, spec);
syslog (LOG_INFO, "% % 250s", aclient, path);
syslog (LOG ERR, "% % 250s |/O err %", aclient, \

menset (aclient, 0, sizeof (aclient));

sprintf (aclient, "[%32s]", \

sprintf (bbuf, "% ", aclient);

syslog (LOG INFO, "% % tineout", aclient, Ip);
Wanna run scripts?\

webs. c: BOF_CHK: 12:redir: redirect to sane. All subsequent interaction with a \

gi ven cal |l er uses

webs. c: BOF_CHK: 58: redir: #define FULL_REDI RECT 1 \

/* include orig req in redir
webs. c: BOF_CHK: 92:redir: /*
"<addr>: <port>" etc on the f

ect */
local -listener redirect.
ly */

We fill in\

webs. c: BOF_CHK: 93:redir: static char redir[] =
webs. c: BOF_CHK: 94:redir: "HTTP/ 1.0 302 Port redirect [valid 15\

seconds]\r\nLocation: http:/
webs. c: BOF_CHK: 453:redir: /*
we redirect */

webs. c: BOF_CHK: 501:redir: /*
redirect */

webs. c: BOF_CHK: 517:redir: /*
webs. c: BOF_CHK: 518:redir: pr
inet_ntoa (lclend.sin_addr),
webs. c: BOF_CHK: 165: af | gs: st

webs. c: BOF_CHK: 182: af | gs: };
webs. c: BOF_CHK: 206: afl gs: q
webs. ¢

webs. c: *NOTI CE: START: enteri
webs. ¢

webs. c: *NOTI CE: START: enteri
webs. ¢

webs. c: *NOTI CE: START: enteri
webs. c: MSC_CHK: 188: WARNI NG

webs. c: MSC_CHK: 198: WARNI NG
/* returns ptr to buf */
webs. c: MSC_CHK: 242: WARNI NG
webs. ¢c: MSC_CHK: 275: WARNI NG
webs. c: MSC_CHK: 411: WARNI NG
i net_ntoa (renend.sin_addr))
webs. c: MSC_CHK: 418: WARNI NG
webs. c: MSC_CHK: 426: WARNI NG
webs. c: MSC_CHK: 430: WARNI NG
webs. c: MSC_CHK: 463: WARNI NG
/* get local-end addr */
webs. c: MSC_CHK: 465: WARNI NG
webs. c: MSC_CHK: 471: WARNI NG
webs. ¢c: MSC_CHK: 473: WARNI NG
webs. ¢c: MSC_CHK: 494: WARNI NG

c

c

(2]

webs. c: MSC_CHK: 555: WARNI NG
webs.

exiting qaudit.

© SANS Institute 2000 - 2002

"
get a socket and neke it avail able *before* \

Find the request-path and include it in the \

hand out the redirect, and clean up */
intf ("%%:%%\r\n", redir, \

lp, pp);

atic unsigned char aflgs[] = {

[* aflgs */

= aflgs[q]; /* convert thru array */

:*NOTI CE: STOP: exiting bounds check node.

ng exec check node.

:*NOTI CE: STOP: exiting exec check nopde.

ng environnental variable check node.

:*NOTI CE: STOP: exiting environmental variable check node.

ng m scel | aneous check node.
char * fgetss (buf, len, from
p = fgets (buf, len, from; \

strcpy (q, webpath);

strcat (out, webidx);

sprintf (aclient, "[% 32s]", \

sprintf (bbuf, "% ", aclient);

strcat (bbuf, unknown);

sprintf (fbuf, "%/ %", webpath, webidx);

X = getsocknane (0, (SA *) & clend, &y); \

bail ("local getsock 0");

x = getsockname (netfdl, (SA *) & clend, &y);
bail ("local getsock nfd");

pp = fgetss (bbuf, x, stdin);

pp = fgetss (bbuf, x, chan);

:*NOTI CE: STOP: exiting miscellaneous check node.

As part of GIAC practical repository.

/* find its nunber */

Author retains full rights.

RATS

$./rats -i -r -w 3 ~/proj/giac/gsnal webs/webs.c
/home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 106: High: fprintf
Check to be sure that the non-constant format string passed as argunent 2 to

this function call does not conme froman untrusted source that could have added

formatting characters that the code is not prepared to handle.

/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs
/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs
/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs
/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs
/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs
/ honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 485: Hi gh: sysl og
/ honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 577: Hi gh: sysl og
/ home/ schal | er/ proj/ gi ac/ gsna/ webs/ webs. c: 604: Hi gh: sysl og
Truncate all input strings to a reasonable |ength before
passing themto this function

:129: High: syslog
:132: High: syslog
:297: High: syslog
:367: High: syslog
:369: High: syslog

OO0 0O00O0

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 242: Hi gh: strcpy
Check to be sure that argument 2 passed to this function call will not nore
data than can be handl ed, resulting in a buffer overfl ow

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 275: Hi gh: strcat

/ honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 426: Hi gh: strcat

Check to be sure that argument 2 passed to this function call will not nore
data than can be handled, resulting in a buffer overflow

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 418: High: sprintf

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 430: High: sprintf

Check to be sure that the format string passed as argunent 2 to this function
call doest not come from an untrusted source that could have added formatting
characters that the code is not prepared to handle. Additionally, the format
string could contain “%' w thout precision that could result in a buffer
overfl ow.

/ honme/ schal | er/ proj/ gi ac/ gsna/ webs/ webs. c: 80: Medi um non-function call \
reference: stat

A function call is not being made here, but a reference is being made to a nane

that is normally a vulnerable function. It could be being assigned as a
pointer to function.

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 337: Medi um read: stat
Check buffer boundaries if calling this function in a | oop and make sure \
you are not in danger of witing past the allocated space

/ honme/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 78: Low. fixed size global \

buffer: stat

/ home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 79: Low:. fixed size global \

buffer: stat

/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 85: Low. fixed size global \

buffer: stat

Extra care should be taken to ensure that character arrays that are allocated
with a static size are used safely. This appears to be a global allocation
and is | ess dangerous than a simlar one on the stack. Extra caution is stil
advi sed, however.

/ home/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 198: Low. fgets: stat
Doubl e check that your buffer is as big as you specify

/ home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 409: Low:. nencpy: stat
Doubl e check that your buffer is as big as you specify

/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 438: Low. chroot: stat

Rem nder: Do not forget to chdir() to an appropriate directory before calling \

chroot()!

/honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 315: Low. open: stat

A potential race condition vulnerability exists here. Normally a call to this
function is vulnerable only when a match check precedes it. No check was

det ected, however one could still exist that could not be detected

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

/honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 431: Low. stat: stat
A potential TOCTQU (Tine O Check, Time OF Use) vulnerability exists

the first line where a check has occured. No matching uses were detected

/ home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 589: Low: stat: stat
A potential TOCTOU (Time O Check, Tine Of Use) vulnerability exists.

the first line where a check has occured. No matching uses were detected

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 198: fgets

Doubl e check to be sure that all input accepted from an external data source
does not exceed the linmts of the variable being used to hold it. Al so make

sure that the input cannot be used in such a manner as to alter your
behavi our in an undesirable way.

Flawfinder

$./flawfinder --context ~/proj/giac/gsna/ webs/webs.c
Fl awfi nder version 0.15, (C) 2001 David A \eeler
Nunmber of dangerous functions in C rul eset: 40
Processi ng /hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c

/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 106 [4] (format) fprintf: if format \
strings can be influenced by an attacker, they can be exploited. Use a \

constant for the format specification.
fprintf (stderr, str, pl, p2, p3, p4, p5, p6);

/ honme/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 242 [4] (buffer) strcpy: does not \

check for buffer overflows. Consider using strncpy or strlcpy.
strcpy (g, webpath);

/ home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 275 [4] (buffer) strcat: does not \

check for buffer overflows. Consider using strncat or strlcat.
strcat (out, webidx);

/ hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 418 [4] (buffer) sprintf: does not \

check for buffer overflows. Use snprintf or vsnprintf.
sprintf (bbuf, "% ", aclient);

/hone/ schal | er/ proj/giac/ gsna/ webs/ webs. c: 426 [4] (buffer) strcat: does not \

check for buffer overflows. Consider using strncat or strlcat.
strcat (bbuf, unknown);

/home/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 430 [4] (buffer) sprintf: does not \

check for buffer overflows. Use snprintf or vsnprintf.
sprintf (fbuf, "%/ %", webpath, webidx);

/ hone/ schal | er/ proj/gi ac/ gsna/ webs/ webs. c: 411 [2] (buffer) sprintf: does not \
check for buffer overflows. Use snprintf or vsnprintf. Risk is | ow because the \

source has a constant maxi mum | ength.
sprintf (aclient, "[% 32s]", inet_ntoa (renend.sin_addr));

There are probably other security vulnerabilities as well; review your code

Bfbtester

-a = all tests
-t = watch tenp file usage
-x 100 = start 100 copies at a tinme

$./bfbtester -a -t -x 100 ~/proj/giac/gsnal/ webs/ webs
=> [hone/ schal | er/ proj/ gi ac/ gsna/ webs/ webs

* Single argunment testing

* Multiple argunents testing

* Environment variable testing
Cl eaning up...mght take a few seconds

Fuzz - Woodard

$./fuzz -r 5 nc local host 80
Testing /usr/bin/nc done -- No faults found

$ tail /var/log/ messages

webs: [127.0.0.1] |ocal host given port 2322

webs: [127.0.0.1] strike 1: bogus first hit: .x#B##TH
webs: [127.0.0.1] l|ocal host given port 2324

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

webs: [127.0.0.1] strike 1: bogus first hit: |##XWn#y#5##| Sj y7#dY\
yH#ENHAF#SHMEN#T f ##No7D_4

webs: [127.0.0.1] |ocal host given port 2326

webs: [127.0.0.1] strike 1: bogus first hit: #=#3yelL#Vn2WJ#/ P##uRC
webs: [127.0.0.1] Iocal host given port 2328

Fuzz - Maxwell

$./fuzz | nc local host 80
<title>Cet real!</title><h2>Not found</h2>
<p>That does not exi st here

$ tail /var/log/ messages

webs: [127.0.0.1] |ocal host given port 2360

webs: [127.0.0.1] strike 1: bogus first hit: ##U#ul ##g##| #- ###qmEUB#X\
#1x Ub8##Rp# F#K#Bv &## SHH####H=Hz #x s O Y#KU##d B#OCo XE#dJ Z

Fuzz - Miller

$ (echo -n "GET "; ./fuzz -0 -e "\n\n'") | nc local host 80
<title>CGet real!</title><h2>Not found</h2>
<p>That does not exist here

$ tail /var/log/ nessages
webs: [127.0.0.1] l|ocal host given port 2366

webs: [127.0.0.1] strike 1: bogus first hit: GET -####qQy79###. | O=z#r #\

e4#UXN7ZI g#l t ##e#u#GROO

Jill
$ nc -1 -p 8000 -v
$./jill local host 80 | ocal host 8000

iis5 remote .printer overflow
dark spyrit <dspyrit @eavuh.org> / beavuh | abs

connecting. .
sent. ..

you may need to send a carriage on your listener if the shell doesn't
have fun!

Webscan

$ cat ipfile
127.0.0.1

$./webscan ipfile

web scan 1.1 by M xter

scanning fromipfile (pid: 17344)

$ sleep 200; cat status.log

Started new session. File: ipfile, PID: 17344
Fi ni shed session. File: ipfile

$ cat ver.log

$ cat vuln.log

Nessus

Nessus Scan Report

© SANS Institute 2000 - 2002 As part of GIAC practical repository.

Author retains full rights.

- Nunmber of hosts which were alive during the test : 1
- Nunber of security holes found : 0

- Number of security warnings found : 1

- Nunber of security notes found : 3

TESTED HOSTS
| ocal host (Security warnings found)
DETAI LS

+ | ocal host
Li st of open ports :
0 ssh (22/tcp) (Security notes found)
o www (80/tcp)
o general/tcp (Security notes found)
o general /udp (Security notes found)
o unknown (3001/tcp) (Security warnings found)

Information found on port ssh (22/tcp)

Renmpt e SSH version
ssh-1.5-openssh_2. 5. 2p2

I nformation found on port general/tcp
Nmap found that this host is running Linux 2.1.122 - 2.2.16
I nformation found on port general/udp

For your information, here is the traceroute to 146.82.16.91 :
146. 82. 16. 91

Warni ng found on port unknown (3001/tcp)

Nessus Daenpn open on port TCP: 3001, NessusD version
NTP/ 1. 2

This file was generated by the Nessus Security Scanner

Whisker

$./whisker.pl -s scan.db -h localhost -i -v
-- whisker / v1.4.0 / rain forest puppy / ww. wiretrip.net --
- Loaded script database of 1968 |ines

Host: | ocal host
Did not return a Server: string; going to automatically rescan
with dunb. db

Loaded script database of 608 |ines

Host: | ocal host
Did not return a Server: string; going to automatically rescan
wi th dunb. db

Audit Evaluation

The gcc compiler emitted several warnings that indicated missing prototypes and unused variables; errors of this type are easy to find
and fix, and do not typically represent security concerns. Gee also warned when certain arguments to functions would be converted
to a different data type; these warnings can be a sign that unexpected data could cause problems due to assumptions made by the
program's author.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

ITS4 and Pscan found several instances of variable format string usage. This class of bug has gained popularity, following buffer
overflows. These warnings bring the programmer's attention to possible corruption due to user input being used as formatting
commands. I T4 reported several other file operations as being risky, particularly those using symbolic names instead of file
descriptors. The danger here lies in the program being subjected to a race condition where the attacker aims to replace the symbolic
object with one under their control in between the time that the program checks for it and when that the program performs the actual
operation. Most of the warnings, upon inspection, would be difficult for an attacker to manipulate, since it would require priviledged
local access; access at this level could be used to simply replace the web server.

Qaudit gives very brief output upon discovering possible problems; it would be more useful to an experienced programmer who
simply wanted a place to start looking for problems. RATS' output was very similar to ITS4's, but provides more information on the
possible problem(s) as well as more knowledge surrounding the function call.

The four black box testing tools (bfbtester and the three fuzz programs) gave no useful feedback, as suspected. ~“Webs" is not the
type of program that these tools expect to test:

e |t does not read from standard input.
o |t expects requests to follow the HTTP protocol.
o |t expects inetd" to hand it a socket to read requests from.

Since “webs" does not expect any command-line parameters or switches, no amount of standard fuzz testing will have any ill effect.
The best test | could come up with was to emulate the “"GET" request of the HTTP protocol; these tests resulted in simple and
immediate error reports from “webs".

Jill, Webscan, Nessus, and Whisker met similar fates - because ““webs' does not support CGI scripts, they all found nothing to
report. Nessus has exploit scripts available for older versions of popular web servers, but did not have the logic to follow the redirect
sent by “webs". As a result, none of the tests affected the important section of code where files are read from disk and sent across
the network.

Isit enough?

The members of the Secure Programming list[25] debated in October and November of 2000 over the definition of security. Many
claimed it wouldn't be possible to ever declare a program " secure”. Others suggest that improving tools and raising awareness helps
raise the bar, and that anything we can do helps. Obviously, without a clear definition of what "~ security” means, it will be difficult
to write programs that are ““secure’.

Thetools that are available address currently-known security concerns, such as buffer overflows, format string vulnerabilities, and
unsafe input usage. As noted above, though, all of these tests are reactive - they must be run after a program has been written.
Proactive guidelines are needed to educate future programmers, particularly ones who will be writing code that should be ™ secure”.

I've seen two definitions of security that look interesting:

« A program isreliableif it does everything it is specified to do. A program is secure if it does everything it is specified to do
and nothing else. -lvan Arce
o A program is secureif it behaves as expected. -Garfinkel and Spafford in [6].

These definitions sound good, but are difficult (if not impossible) to trandate to real-world examples. Reliability is a large part of
security (think Denia of Service attacks), but what does it mean to ~"behave as expected”? In a narrow context such as web servers,
we can define a certain level of functionality that is expected; it is this basic functionality (pass files from a certain subdirectory over
a socket) that drew meto “webs".

Once CGlI scripts and server-side processing (SSI, Enterprise Java Beans, Server-side javascript, etc) are introduced, it becomes
more difficult to define and measure what is expected. | believe that a new approach, like webs, is needed: to start with a minimum
of functionality and add new features as they are audited. While it sounds very basic, one person has noted that some companies
aren't even aware that code needs to be audited: ht t p: / / ww. securi t yf ocus. con ar chi ve/ 98/ 153537,

| compared the auditing results for ~“webs" with two other small web servers: boa[26] and thttpd[27]. Both of these web servers
consist of several source files written in C. Both projects aim to be small, fast, and secure web servers. RATS and I T$4 both
reported more possible problems with boa and thttpd than with webs, primarily due to the larger code base.

Future work

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Maintainers of software programs that are used in sensitive areas, such as network daemons and setuid programs, should use the
available auditing tools to review their code. We need a future environment where security-related bugs are completely
unacceptable. This can be accomplished by introducing security conceptsinto programming language courses, by combining and
improving existing auditing tools, and by creating encouraging the public release of source code. Work is currently being done on
the OpenBSD operating system to audit each line of code.

Current security threats are the result of research on new waysto interact with programs. Programs that accept input from the
outside, whether it be a human or another program, should be careful about the assumptions it makes. A valuable concept here is one
attributed to Jon Postel: ““be liberal in what you accept and conservative in what you send". Careful attention to this concept while
creating programs can help avoid future security breaches. Note that programs need not accept all inputs, but rather be libera in their
assumptions about the size and composition of that input.

Work should continue on several ongoing security resources. David Wheeler's Secure Programming FAQ[28], the Shmoo site[29],
and the SecurityFocus FAQ[30]. Asthese files grow in size and detail, future programmers will have more resources to draw upon.

Source code auditing tools do a decent job of alerting a conscientous programmer to possible problems. Black box testing tools do a
good job in their area of expertise. What we need are protocol -aware auditing tools. These tools should understand a certain

protocol; as a result, they would test more paths of the target program. These types of tests are also known as " protocol conformance
testing", and are often done in other areas, such as hardware manufacturing and telecommunications, where there are specific
expectations regarding interactions.

Techniques and methods have been developed to test TCP/IP (ht t p: / / www-

m ce. cs. ucl . ac. uk/ mul timedi a/ misc/tcp_i p/ 8603. nm ww/ 0314. ht n1), OSI protocols

(http: //www. conput er . or g/ cspress/ cat al og/ BP05352. ht m), and formal description methods

(http://ken.slctech. org/ m scdat acom osi _pr ot ocol . ht m). These ideas, combined with black box testing, could be
developed into a protocol -aware testing tool for HTTP. | have taken an interest in this area, and have begun a project called
““protofuzz" at Sourceforge] 31].

The aim of the protofuzz project is to extend the original fuzz programs into network protocols. There will be three stages to the
protofuzz testing architecture:

1. Generate a grammar for a certain protocol (SSH, NTP, DNS, HTTP, etc).
2. Generate a *“fuzz session” from the grammar.
3. Test the target with the fuzz session.

Protofuzz will build on as much earlier work as possible; | hope to be able to generate grammars from the RFC descriptions of the
protocols. | will use the ideas from existing fuzz programs to generate the sessions and use tools such as netcat[24] to run the tests.

Improvements can only be made after problems are found, and problems can be found much more quickly and easily once the
source code of a program is available. It iswidely accepted in the cryptography community that secret algorithms are often weaker
than publicly-available ones, due to the fact that the remaining publicly-available ones have been tested by many people. One
concern that security practitioners have with making source code available is that the “black hat" community then also has a chance
to find bugs in the program that lead to security violations. It is only through the cycle of finding and patching bugs that a program
can survive.

The Apache web server is one example of an open-source program that has survived this cycle. Many earlier versions of the
program had bugs; some of these bugs could lead to unexpected behavior. After the bugs were found, however, a patch was soon
available. With closed-source programs, insecure versions of programs may exist for months before afix is available, if at all. The
open source community, once it begins relying on programs, tends to find motivation to keep those programs running bug-free, and
often has the means to provide suggestions for fixes, if not the fixes themselves. Such is not the case with closed-source software.

The open source movement has gained momentum recently with the success of several open source programs, including the Linux
kernel. The movement has used several principles that have been beneficial. One of theseisthe idea of “release early and often"[32,
Lesson #1]. This guideline encourages the author of a program to look beyond himself as the expert. If the program is mostly
working, but several bugs remain, other people may recognize the symptoms and suggest ways to fix the bug. Releasing the source
code early can also result in suggestions for improvement that may not have been realized by the author alone.

As more people see and use the program, it is exposed to a variety of environments and expectations. This variety givesrise to
another open source maxim: ~~Many eyes make all bugs shallow"[32, Lesson #8]. Once a program becomes widely used, it is
subjected to a variety of environments, some of which may not have been envisioned by the origina author. If these new
environments expose limitations or bugs in the program, then the program can be improved.

In the end, security requires vigilance from both the programmer(s) and the administrator(s). Auditing tools can assist both partiesin

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

determining areas of vulnerability, while community standards and review raise the bar of software quality.

Patch for webs.c

| have submitted the following patch to Hobbit for review. The main change is the addition of the suck_headers function, which
reads the extra HT TP request headers that are sent by most browsers. The other changes exist to pacify gcc's -Wall option.

--- webs099/ webs. c Fri Apr
+++ ny_webs/ webs. c Mon Jul
@ -30,6 +30,8 @@

#i ncl ude "generic. h"

+#i ncl ude <uni std. h>
+#i ncl ude <stdlib. h>
#i ncl ude <stdio. h>
#i nclude <string. h>
#i ncl ude <setjnp. h>
@@ -225,7 +227,6 @@
{
regi ster char *p, *q, *gs;
regi ster int x;
- register short sl, s2;

if (strncnp (str, "CET ", 4)
return (0);
@ - 369, 17 +370, 66 @@

syslog (LOG ERR, "% % 250s |/O err %", aclient, path, y);

} /* handfile */

12 17:58:42 1996
16 09:11:50 2001
/* conmes with netcat, too... */

/* for sleep() */
/* for exit() */

/* strcpy, strchr, yadda yadda */
/* jnp_buf et al */

/* first/second found-space flags */

) /* only valid nethod here! */

/* nonfatal */

+voi d suck_headers(FILE * channel) {

int stage = O;
int pristine = 1,

/*

Start at stage 0. Wth
in stage 1, with a \n,
in stage 2, with a \r,
in stage 3, with a \n,

*/

do {

} else

I S A T Tk T T e T i T c i S e S S S S S S S S S S S S S e I

} else

© SANS Institute 2000 - 2002

/* read until you see 13,10,13,10 (\r,\n,\r,\n) sequence */

a\r, go to stage 1.
go to stage 2.
go to stage 3.
go to stage 4, done.

Anyt hi ng unexpected resets us to stage O

[* if the very first thing we read is a \r\n, dunp out. |'ve only seen
this come up with manual telnet testing. netscape and |ynx (and
presumably nost browsers) send sone header junk. nc gets us EOF,
but telnet lets us enter nore stuff. */

int trash = fgetc(channel);
if (trash == EOF) {

return;
}
if (trash == "\r") {
if (stage == 0) {
stage = 1;
} else if (stage == 2) {
stage = 3;
} else {
stage = 0O;
} else if (trash == "'"\n") {

if (stage == 1) {

if (pristine) {
return;

} else {
stage = 2;

}
if (stage == 3) {

return;

{

As part of GIAC practical repository.

Author retains full rights.

+ st age
+
+ } else {
+ pristine = 0;
+ stage = O;
+ }
+ } while (1);
+}
+
/* main :
and away we go... */

-mai n(argc, argv)

+i nt main(argc, argv)
int argc;
char ** argv;

regi ster char * pp;
register int x;
int vy;

- int netfdl;

- int netfd2;

+ int netfdl=0;

+ int netfd2=0;
USHORT | p;

:O;

struct hostent * hp = (struct hostent *) O;

@@ -592,6 +642,11 @@
conti nue;
}
X

= 1;

suck_header s(chan);

+ o+ + + o+

if ((dafile.st_node & S |IFMI) ==
handfile (pp, netfd2);
el se
@ - 601, 7 +656, 6 @@

/* read in (and toss) any remaining request header lines. */
/* this gets around the broken pipe thing that cones up with netscape */

S_| FREG)

/* here when tinmeout fired; log it and die */

(void) close (netfd2);
(void) close (netfdl);

- syslog (LOGINFO, "% %l timeout",
exit (0);

Y /* main */

aclient, Ip);

Embedded web servers

August, 1996

http://ww. emnveb. com

Virata's website, powered by "EmWeb", their embedded web server product.

August, 1997

http://ww. webrevi ew. com’ 1997/ 08_08/ devel opers/ 08 08 97 1.shtm
An article entitled " The Incredible Shrinking Web Server" introduces embedded web servers as a counter to bloat in

mainstream web servers.

March, 1998

http://ww. emneb. com web_nmanagenent/trade_articl es/ csd0398. ht m

Article on the EmWeb site explaining the advantages of web-based management of network devices.

January, 1999

http://wearabl es. st anf ord. edu/ har dwar e. ht m
Features a matchbox-sized web server and PC, with instructions for building both. The web site is powered by the web server

it describes.

© SANS Institute 2000 - 2002

As part of GIAC practical repository.

Author retains full rights.

April, 1999
http://dpnm post ech. ac. kr/ ews/
An introduction to, and overview of, Embedded Web Server Technology.

July, 1999
http://ww-ccs. cs.umass. edu/ ~shri/iPic.htn
Explainstheir IPic - a match head sized web server.

May, 2000

http://ww.tiqgit.com
Tiqgit Computers spins off from the Stanford University Wearable Computing Laboratory.

September, 2000

http://ww. al | egrosoft.com
Allegrosoft offers RomPager, "an HTTP 1.1 compliant, portable embedded Web server designed for use in any network
device."

October, 2000

http://ww.jkm cro.com emaeb. ht
JK Microsystems offers embedded TCP devices; they provide a working example at
http://209.233.102. 10/ honepage. ht m

March, 2001

http://ww. prosyst. contf press/online_househol d. ht m
ProSyst and Siemens present an intelligent online household, including an Internet-connected washing machine.

April, 2001
http://wwvriverdal e. k12. or. us/|inux/toaster/
A high school student embeds most of a PC into a toaster oven, then installs Linux and makes a terminal server out of it.

June, 2001
http://ww. uclinux. com hand- power ed_web_server/index. htm
Explains how a Lineo employee created a hand-powered web server using a flashlight and Linux.

Bibliography

1
Google search engine.
http://ww. googl e. conT .

2
Netcraft web server survey.
http://ww. netcraft.com survey/.
3
Source code to hobbit's webs.
http://avian.org/src/hacks/ webs099.tgz.
4
Lincoln D. Stein.
Www security fag.
http://ww. w3. org/ Security/ Fag/ wwsf 1. htm .
5
William R. Cheswick and Steven M. Bellovin.
Firewalls and Internet Security.
Addison-Wesley, 1994.
6

Simson Garfinkel and Gene Spafford.
Practical Unix and Internet Security.
O'Rellly & Associates, 2nd edition, April 1996.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Julia H. Allen.
The CERT Guide to System and Network Security Practices.
Addison-Wesley, 2001.

Aviel D. Rubin, Daniel Geer, and Marcus J. Ranum.
Web Security Sourcebook.
John Wiley & Sons, Inc., 1997.

Brian W. Kernighan and Rob Pike.
The Practice of Programming.
Addison-Wesley Professional Computing Series, February 1999.

10
EGCS Steering Committee.
Gce compiler.
http://ww. gnu. or g/ sof t ware/ gcc/ gcc. html .

11
John Viega.
Its4.
http://freshneat.net/projects/its4/.

12
Alan DeKok.
Problem scanner.
http://ww.striker.ottawa. on. cal/ ~al and/ pscan/ .

13
Antonomasia.
Scanner.
http://ww. notatl a. denon. co. uk/ SOFTWARE/ SCANNER/ .

14
vo@fakehao.org.
Quick audit.
http://freshneat. net/projects/qaudit/.

15
RATS team.
Rough auditing tool for security.
http://freshneat.net/projects/rats/.

16
David A. Whedler.
Flawfinder.
http://ww. dwheel er. com fl awfi nder/.

17
Dawson Engler, Benjamin Chelf, David Y u Chen, Andy Chou, Seth Hallem, Wallace Huang, and Junfeng Y ang.
Meta-level compilation.
http:// hands. st anford. edu/.

18
Barton P. Miller, Lars Fredriksen, and Bryan So.
Fuzz testing of application reliability.
http://ww.cs.w sc. edu/ ~bart/fuzz/fuzz. htnm .

19
Justin E. Forrester and Barton P. Miller.
An empirical study of the robustness of windows nt applications using random testing.

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

http://ww. cs.w sc. edu/ ~bart/fuzz/fuzz-nt.htm

20
Mike Heffner.
Brute force binary tester.
http://bfbtester.sourceforge. net/.

21
Ben Woodard.
Extended fuzz.
http://fuzz. sourceforge. net/.

22
Scott Maxwell.
The bulletproof penguin.
http://hone. pacbel | . net/s-max/scott/bull etproof-penguin.htm .

23
Lars Fredriksen, Bryan So, and Bart Miller.
Original fuzz program.
ftp://grilled.cs.wsc.edu/fuzz/.

24
Hobbit.
Netcat.
http://ww. | Opht.com ~wel d/ netcat/.

25
SecurityFocus.com.
Secure programming mailing list.
http://ww. securityfocus.com foruns/secprog/intro.htnl.

26
Larry Doolittle and Jon Nelson.
Boa webserver.
http://ww. boa. org/.

27
Jef Poskanzer.
thttpd - tiny/turbo/throttling http server.
http://ww. acnme. conf sof tware/thttpd/.

28
David A. Wheeler.
Secure programming howto.
http://ww. dwheel er. com secur e- prograns/ Secur e- Progr ans- HOMO book1. ht m

29
Shmoo.com.
How to write secure code.
http://ww. shnoo. con secur ecode/ .

30
Oliver Friedrichs at SecurityFocus.com.
Working document: Secure programming v1.00.
http://ww. securityfocus.com foruns/secprog/secure-programmng. htm .

31
Jeff Schaller.
Protofuzz.
http://sourceforge. net/projects/protofuzz/.

32

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

Eric S. Raymond.
The cathedral and the bazaar.

http://ww. tuxedo. org/ ~esr/writings/cathedral -bazaar/ cat hedral - bazaar/.

Footnotes

.. “webs'!
Submitted under the requirements of SANS GSNA Practical v1.0

... devices?
See part V for a brief list.

Jeff Schaller
2001-07-24

© SANS Institute 2000 - 2002 As part of GIAC practical repository. Author retains full rights.

