
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

Audit Report

Collaborative Research System
Web Application Security Audit

GSNA Practical Assignment, Version 3.2, Option 1

Submitted By

Dan Aiken, GSEC
December 15, 2004

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

II DAN_AIKEN_GSNA

Abstract

I am auditing an Internet-based application used for human studies medical research
at an academic medical center. I will call it the Collaborative Research System
(CRS—a fictitious name for a live production application). Research is one of the three
emphases at the medical center, along with teaching and_—_first and
foremost_—_providing excellent patient care. This system was first implemented as an
intranet-based system and later moved to the internet.

The information processed and stored by CRS is sensitive patient and research
information. A high level of protection for CRS is vital to the hospital and its research
organization, especially since CRS is accessible from the Internet. Therefore, I will
audit CRS to assess its ability to protect patient and research information from outside
attacks against the most common Web application vulnerabilities.

This audit will be specific to the application. The network, server, and workstations are
referenced in the audit to define the environment, but they will not themselves be
audited.

Auditing web applications is still in its infancy. Few freeware or shareware tools focus
on this very important subject. Most security audit tools focus on the network and
servers. However, applications are often vulnerable to attacks that will not be detected
by network and server security controls, and could compromise not only the application
and its data, but the network and servers as well.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA III

Contents

Abstract.. ii

Figures.. iv

Tables ..v

1. Research in Audit, Measurement Practice, and Control..1

1.1. Description of the System ...1

1.2. Evaluation of the Most Significant Risks ...2

1.3. Current State of Practice – Secure Configurations or Audit Methods................4

1.4. Tools...5

2. Audit Checklist ...9

2.1. Scope ...9

2.2. Structure...9

2.3. Conventions ... 10

2.4. Unvalidated Input Checklist ... 10

2.5. Broken Access Control Checklist.. 12

2.6. Broken Authentication and Session Management Checklist............................ 14

2.7. Cross-site Scripting (XSS) Flaws Checklist... 19

2.8. Buffer Overflows Checklist ... 20

2.9. Injection Flaws Checklist .. 20

2.10. Improper Error Handling Checklist.. 21

2.11. Insecure Storage Checklist .. 23

2.12. Denial of Service Checklist .. 25

2.13. Hidden Content.. 26

3. Audit Testing, Evidence, and Findings ...28

3.1. Unvalidated Input Checklist ... 28

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

IV DAN_AIKEN_GSNA

3.2. Broken Access Control Checklist.. 32

3.3. Broken Authentication and Session Management Checklist............................ 34

3.4. Cross-site Scripting (XSS) Flaws Checklist... 39

3.5. Improper Error Handling Checklist.. 40

3.6. Insecure Storage Checklist .. 41

4. Audit Report ...45

4.1. Executive Summary .. 45

4.1.1. Positive Findings.. 46

4.1.2. Negative Findings.. 46

4.2. Audit Findings... 46

4.2.1. Terminology.. 46

4.2.2. Passed Audits .. 47

4.2.3. Failed Audits... 48

4.3. Audit Recommendations.. 53

4.4. Compensating Controls.. 55

Appendix A – Top 10 Most Critical Web Application Vulnerabilities58

Appendix B – Client-Side Validation...60

Appendix C – Cache Control HTTP Header Statement..62

Appendix D – Authentication and Session Management..63

Appendix E – Error Handling ..64

Appendix F – Secure Storage ..65

Appendix G – Additional Resources...67

References ..69

Figures

Figure 1.1 – CRS Configuration ...2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA V

Figure 1.2 – Achilles HTTP / HTTPS Proxy ...6

 Tables

Table 1.1 – CRS Configuration...1

Table 1.2 – Summary of Risk Evaluation...3

Table 2.1 – Unvalidated Input Checklist (UI)..10

Table 2.2 – Broken Access Control Checklist (BA) ...12

Table 2.3 – Broken Authentication and Session Management Checklist (AS)15

Table 2.4 – Cross-site Scripting (XSS) Flaws Checklist (XS) ...19

Table 2.5 – Buffer Overflows Checklist (BO) ...20

Table 2.6 – Injection Flaws Checklist (IF) ..21

Table 2.7 – Improper Error Handling Checklist (IE)...22

Table 2.8 – Insecure Storage Checklist (IS) ..23

Table 2.9 – Denial of Service Checklist (DS)...25

Table 2.10 – Hidden Content Checklist (HC)...26

Table 3.1 – Unvalidated Input Checklist (UI)..28

Table 3.2 – Broken Access Control Checklist (BA) ...32

Table 3.3 – Broken Authentication and Session Management Checklist (AS)34

Table 3.4 – Cross-site Scripting (XSS) Flaws Checklist (XS) ...39

Table 3.5 – Improper Error Handling Checklist (IE)...40

Table 3.6 – Insecure Storage Checklist (IS) ..41

Table 4.1 – Error Handling..47

Table 4.2 – Missing Application Security Policies..48

Table 4.3 – Missing Application Security Design Specifications48

Table 4.4 – Unvalidated Input...49

Table 4.5 – Broken Access Control..49

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

VI DAN_AIKEN_GSNA

Table 4.6 – Broken Authentication and Session Management.......................................50

Table 4.7 – Cross-site Scripting (XSS) Flaws..51

Table 4.8 – Improper Error Handling..52

Table 4.9 – Insecure Storage ...52

Table 4.10 – Application Security Policies ...53

Table 4.11 – Application Security Design Specifications...53

Table 4.12 – Input Validation ..54

Table 4.13 – Access Control...54

Table 4.14 – Authentication and Session Management..54

Table 4.15 – Cross-site Scripting (XSS) Prevention..54

Table 4.16 – Error Handling..54

Table 4.17 – Secure Storage..55

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 1

1. Research in Audit, Measurement Practice, and Control

1.1. Description of the System

I am auditing the Collaborative Research System (CRS), an Internet-based application
that was developed to join workflow, research records, specimen data, and logistics
information with the medical records of individual medical research patients involved in
human subjects clinical trials. The goal was to create a secure, internet-based clinical
research application to connect patients, doctors, and laboratory scientists. CRS was
designed to enable researchers to collaborate externally, make study and patient data
available within a research organization, and extend this capability to the broader
research community.

CRS is a J2EE 3-tier Internet-based application using XSL and XSLT for the BEA
Weblogic v.6.1 Presentation Layer, a Java business layer, and an Oracle v.9.0
database layer. Servers are located in open equipment racks in the hospital’s main
computer center.

Table 1.1 – CRS Configuration

Application Tier Hardware and Software

Client Internet Explorer 5.5 or later required

Presentation

Dell PowerEdge 1550R
BEA Weblogic 6.1
Microsoft Internet Information Server 5.0
Windows 2000 Server

Business and Database
Dell PowerEdge 4400R
Oracle 9i
Windows 2000 Server

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

2 DAN_AIKEN_GSNA

Figure 1.1 – CRS Configuration

1.2. Evaluation of the Most Significant Risks

Gartner analyst John Pescatore estimates that 75% of attacks against Web
servers are entering through applications and not at the network level. And,
adds Pescatore, when a company makes even subtle changes on its Web
sites and applications, new vulnerabilities can arise. (Hulme)

Application vulnerabilities are often neglected, but they are as important to deal
with as network issues. If every company eliminated [the OWASP Top 10
Critical Web Application Security Vulnerabilities], their work wouldn't be done,
but they, and the Internet, would be significantly safer. (Beales)

By design,…the network must route legitimate traffic to the critical resources
housing business logic in the form of applications. Network security protects
the integrity and reliability of the traffic to critical resources, but application
logic must determine what input or transactions are legitimate. Manipulation
and corruption of application logic is an attacker’s approach to compromising
business data. (Levine, p.1)

Internet

Firewall

Internal Network

 CRS Web Server

DMZ

CRS Business and
Database Server

Border Router

 CRS Client

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 3

CRS, which stores and processes patient and research data generated from human
subjects medical research clinical trials, is an attractive target for hacking and for
corporate espionage.

Both patients and research sponsors depend on the effectiveness of the application’s
security controls. Inappropriate disclosure of patient data can have results ranging from
patient irritation and embarrassment to social and financial loss. Likewise, disclosure of
research data can result in competitive disadvantage and financial loss for research
sponsors. In either case, patients or sponsors are likely to lose confidence and trust in
the hospital and research organization.

The compromise of the security of CRS threatens not only patient and research data,
but also the security of the hospital network. The consequences of a CRS security
incident could extend to other medical and business processes and data.

The security of CRS becomes even more important because CRS is hosted on the
Internet, thus having a high level of exposure to malicious attack. Considering the
value and sensitivity of CRS and other hospital data, CRS should be carefully
controlled and thoroughly secured.

Although risks are often divided into intentional or accidental, for the purposes of this
audit the necessary protections are the same. For the most part, it also doesn’t matter
whether the attack is internal or external, although an internal attacker could have
additional knowledge about the application logic and database structure that could
make an attack more effective.

A most helpful web site is the Open Web Application Security Project (OWASP) at
www.owasp.org. Among other resources, OWASP offers a list of the ten most critical
web application vulnerabilities. My audit of CRS will be based on nine of the ten listed
vulnerabilities.

I will also audit for the presence of Hidden Content, a vulnerability described in
Auditing Web Servers and Applications (Rhoades), Day 3 of the SANS Auditing
Networks, Parameters, and Systems course, under Web Application Audit—Higher
Level Concepts. This does not seem to be included in the OWASP Top Ten list.

Table 1.2 – Summary of Risk Evaluation

Threat Risk Likelihood Severity I/P/O Consequences

Unvalidated
Input

Undetected
malicious input

Moderate
to High

High Input Disclosure of
sensitive data
or compromise
of the web site

Broken Access
Control

Improper
access to
restricted data

Moderate High Process Disclosure of
sensitive data
or compromise
of the web site

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

4 DAN_AIKEN_GSNA

Threat Risk Likelihood Severity I/P/O Consequences
of the web site

Broken
Authentication
and Session
Management

Impersonation
or session
hijacking

Moderate High Process Disclosure of
sensitive data
or compromise
of the web site

XSS Flaws Loss of user
confidence and
undetected
malicious input

Moderate
to High

High Input Disclosure of
sensitive data
or compromise
of the web site

Buffer
Overflows

Corruption of
application
execution

Low Moderate Input Crashing the
application

Injection Flaws Undetected
malicious input

Moderate High Input Disclosure of
sensitive data
or the complete
compromise of
the web site

Improper Error
Handling

Disclosure of
application
implementation
details

Moderate Moderate Output Provide useful
implementation
details to an
attacker

Insecure
Storage

Disclosure of
sensitive data

Moderate High Output Disclosure of
sensitive data
or compromise
of the web site

DoS Exhaustion of
application
resources

Moderate
to High

Moderate Process Lack of
application
availability

Hidden Content Disclosure of
unnecessary
system data

Moderate Moderate Output Provide useful
implementation
details to an
attacker

1.3. Current State of Practice – Secure Configurations or Audit Methods

Currently, security auditing of web applications is still in its infancy. Some tools exist
that will assist in the audit, but there are many more tools available to audit the
network, internet server, application server, and database server than the application
itself. In many cases, the most effective approach, in my opinion, is to review the
application development policies, design requirements, and application code. This may
result in a less than ideal audit since many of the audit steps are subjective and
depend heavily on the experience and development skills of the auditor. As tools

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 5

become more mature and more readily available, there may be less need for detailed
code reviews. However, I recommend that regular reviews of policies, design require-
ments, and application code continue to be part of application development and
maintenance processes for two reasons: to catch errors at the earliest possible stage
of the development process and to prevent or uncover insider attacks by developers.

In addition to the Ten Most Critical Web Vulnerabilities list (see Appendix A), OWASP
produces free, professional-quality, open-source documentation, tools, and standards
for application developers and security professionals. The Ten Most Critical Web
Vulnerabilities list also includes testing information and a checklist for these
vulnerabilities. This is a very helpful site.

Another site targeted at the security of web applications is the Web Application
Security Consortium (www.webappsec.org), which has produced a Threat
Classification in an effort to promote industry standard terminology for describing web
application security issues.

Microsoft has a helpful resource: “Improving Web Application Security: Threats and
Countermeasures” in the Microsoft MSDN Library (msdn.microsoft.com/library/_en-
us/dnnetsec/html/ThreatCounter.asp). This resource addresses security considerations
during the design, development, implementation, and maintenance phases of a .NET
web application. It is a practical guide complete with many useful examples.

The SANS InfoSec Reading Room (www.sans.org/rr/audittech/) has an excellent
resource that addresses application security: Auditing Web Applications for Small and
Medium Sized Businesses by Angela Loomis (Loomis).

Web Application Security – Layers of Protection, by William Fredholm, in the SANS
Reading Room, includes helpful insights and references to sites and tools that are
useful for auditing web applications. (Fredholm)

On November 16, 2004, the FDIC sent a letter to all FDIC-supervised banks
(commercial and savings), Guidance on Developing an Effective Computer Software
Evaluation Program to Assure Quality and Regulatory Compliance. In this letter, the
FDIC provided several steps these institutions should take to assure product
quality—including application security—and regulatory compliance. These steps would
be helpful to any organization when developing or purchasing software. (FDIC)

1.4. Tools

Unfortunately, most security products available today cannot adequately examine
the applications that reside on your Web server! Yet these applications often
provide backend access to confidential data! (SPI Dynamics)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

6 DAN_AIKEN_GSNA

Most security tools available today focus on network and server security. However,
there are some useful tools available; some are freeware, others are commercial
products.

SSLDigger – Foundstone has developed a freeware tool, SSLDigger v1.0, to assess
the strength of SSL servers by testing the strength of the ciphers supported by the site
(www.foundstone.com). An informative whitepaper on the need for strong SSL ciphers
is also available on this site. (Araujo)

Achilles – Achilles is a publicly released general-purpose web application security
assessment tool. Achilles acts as a HTTP / HTTPS proxy that sits between a browser
and a web server and allows a user to intercept, log, and modify web traffic on the fly.
(achilles.mavensecurity.com)

Figure 1.2 – Achilles HTTP / HTTPS Proxy

Browser Web Server

AchillesSSL1 SSL2

Webcracker – This program exploits a vulnerability in web site authentication
methods. A password protected website can be easily brute-force hacked if there is no
set limit on the number of times an incorrect password or User ID can be tried.
(www.securityfocus.com/tools/706)

WebInspect – This is a commercial web application vulnerability assessment tool from
SPI Dynamics. You can download a 15-day trial version that includes a key allowing
you to scan their test web site. WebInspect comes with several policies, including
policies to audit against GLBA, HIPAA, and SOX security standards and OWASP Top
Ten vulnerabilities, a Full scan policy, and an aggressive Assault policy. (Warning: the
Assault policy could bring down a web site.)

Application Firewalls – There are a number of application firewall products that could
offer protection for existing and new web applications. Network World Fusion
(www.nwfusion.com/_bg/2004/appsecurity/index.jsp) rated and compared ten
application firewall products. Purchase prices for the reviewed products range from
$1,295 to $35,000.

Several higher-end application firewall products are shown below. Considering the
effort required to make an existing application secure, an application firewall may be
the most cost-effective way to improve and maintain application security, particularly
for sites that have multiple installed web applications that are not properly secured.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 7

• NC-1000 Application Security Gateway
$29,000
”The NetContinuum Application Security Gateway delivers the highest level of
protection available for your critical applications — eliminating data theft, financial
fraud and loss of customer confidence due to web application attacks.”
www.netcontinuum.com/

• SecureSphere G4 Gateway and SecureSphere MX Management Server
$30,000
”The SecureSphere Dynamic Profiling Firewall family of appliances — including
the G4 Gateway and the MX Management Server — delivers a comprehensive
security solution that proactively identifies and blocks attacks that threaten your
mission-critical web-based enterprise applications and databases.”
www.imperva.com/products/securesphere/

• TrafficShield
$25-35,000
”TrafficShield is a Web Application Firewall that provides comprehensive,
proactive, application-layer protection against both generalized and targeted
attacks. TrafficShield employs a positive security model ('deny all unless
allowed') to permit only valid and authorized application transactions, while
automatically protecting critical Web applications from attacks such as Google
hacking, cross-site scripting, and parameter tampering.”
www.f5.com/f5products/products/TrafficShield/

• AppShield
$20,000
“AppShield, an automatic Web application firewall, provides enterprise-class
Web intrusion prevention for a failsafe defense against all application level
breaches. AppShield allows for easy application deployment in a secure
environment by intelligently identifying the legitimate requests made of an
ebusiness site and permitting only those actions to take place, enforcing the Web
and business logic of the site. By preventing, logging and alerting administrators
to any type of application manipulation through the browser, AppShield maintains
application behavior 24/7 without the need for signatures or rules.”
www.watchfire.com/products/appshield/default.asp

• Teros Secure Application Gateway
$25,000
”The Teros Secure Application Gateway does for Web and Web Services
applications what network firewalls do for the network. The Teros Gateway is a
hardened security appliance that is deployed directly in the data path of
application traffic and blocks attacks that are not detected by network-based
firewalls and intrusion detection systems. The Teros Gateway enforces a positive
security model that only permits correct application behavior, without relying on
attack signatures. It provides defenses for vulnerabilities that may exist within
custom applications, as well as the known weaknesses in commercially-

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

8 DAN_AIKEN_GSNA

developed software.”
www.teros.com/products/appliances/gateway/index.shtml

• e-Gap Application Firewall
$23,000
”The e-Gap® Application Firewall enables organizations to rapidly deploy secure
web-based access to sensitive core applications. The System may be used to
protect e-business applications for customers or partners (such as eCRM, supply
chain integration or e-billing). It protects against known and unknown threats by
isolating application servers - via Air Gap technology - and tightly controlling
application layer access to them. It also significantly reduces the urgency to
patch production web servers. It unites all of the application-protection
components into a single application-centric appliance, and features automatic
learning of the application to generate and enforce application-level rule sets.
Encryption, authorization, authentication, PKI, HTTP payload screening,
automatic rule-set generation and a physical air gap all reside within an
integrated software/hardware platform.”
www.whalecommunications.com/site/Whale/Corporate/Whale.asp?pi=35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 9

2. Audit Checklist

A number of the following audit steps will involve code reviews. It is not always
possible to provide a detailed explanation of “how to test” (for example, when looking
for appropriate and consistent error handling). In these cases, the value of the audit is
heavily dependant on the skills and experience of the auditor(s). Where possible, the
code review should be followed by testing to show the results of vulnerabilities
discovered in the code.

2.1. Scope

“The Gartner Group estimates that 70 percent of computer attacks are now aimed not
at individual networks, but at the applications that run on them.” (Roberts) Networks
may be secure, but most network security controls will not prevent attacks on Internet
applications because they see them as legitimate network traffic. It is up to the
individual application to validate input values to be sure they are valid and appropriate.

Although the overall security of CRS is impacted by the effectiveness of the administra-
tive, physical, and technical security controls of its network, servers, and clients, for the
purposes of this audit, I will limit my examination to CRS’ ability to protect itself, its
data, and its environment against threats common to web-based applications. I will be
using the first nine of the Open Web Application Security Project’s Top Ten Most
Critical Web Application Vulnerabilities list as my principal guide for vulnerabilities to be
audited (OWASP). I will also audit for Hidden Content as suggested by Advanced
System and Network Auditing, the course material for the SANS Track 7 course,
Auditing Networks, Perimeters, and Systems. (Hoelzer)

2.2. Structure

The checklists are organized by the threats described in Section 1. Each checklist step
has the following elements.

Identifier A unique code for each checklist step

Title A very brief description of the checklist item

Reference The source or inspiration of the checklist item

Risk Why this checklist step is important

Test Procedure A detailed testing procedure for the checklist item

Testing Nature Whether this checklist item is subjective or objective

Evidence [A placeholder for Part 3: Audit Testing, Evidence, and Findings]

Findings [A placeholder for Part 3: Audit Testing, Evidence, and Findings]

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

10 DAN_AIKEN_GSNA

2.3. Conventions

System commands and the results returned that are used as part of the testing are
referenced in Courier font. References are denoted by author name or organization
acronym. A full citation may be found in the References list at the end of the report.

2.4. Unvalidated Input Checklist

Web applications use input from HTTP requests (and occasionally files) to
determine how to respond. Attackers can tamper with any part of an HTTP
request, including the URL, query string, headers, cookies, form fields, and
hidden fields, to try to bypass the site’s security mechanisms. Common names
for common input tampering attacks include: forced browsing, command
insertion, cross-site scripting, buffer overflows, format string attacks, SQL
injection, cookie poisoning, and hidden field manipulation. (OWASP, p.5)

Before the application responds to the HTTP request, the input or file must be broken
down into its simplest form and validated. Client side validation has no security value
because attackers can bypass that processing and send whatever they want. If client
side validation is used, it should mirror the server side validation logic.1

Cross-site scripting, buffer overflows, and injection flaws are discussed in more detail
below.

Table 2.1 – Unvalidated Input Checklist (UI)

Identifier UI-1

Title Input Validation Policy Review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test Procedure
Does a policy exist that requires the application to validate all input,
including the URL query string, headers, cookies, form fields, and
hidden fields?

Testing Nature Objective

Evidence

Findings

1 Unvalidated Input references:

• OWASP Guide to Building Secure Web Applications and Web Services, Chapter 10: Data Validation
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• modsecurity project (Apache module for HTTP validation) www.modsecurity.org
• How to Build an HTTP Request Validation Engine for Your J2EE Application (J2EE validation with Stinger)

www.owasp.org/columns/jwilliams/jwilliams2.html
• Have Your Cake and Eat it Too (.NET validation) www.owasp.org/columns/jpoteet/jpoteet2.html

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 11

Identifier UI-2

Title Input Validation Design Documentation Review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test Procedure
Does a design document exist requiring that valid values be verified
for all input, including the URL query string, headers, cookies, form
fields, and hidden fields?

Testing Nature Objective

Evidence

Findings

Identifier UI-3

Title Input validation code review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test Procedure

The simplest way to find uses of unvalidated input (tainted
parameters) is to have a detailed code review, searching for all the
calls where information is extracted from an HTTP request. (In a
J2EE application, these are the methods in the HttpServletRequest
class.) Then follow the code to see where that variable gets used. If
the variable is not checked before it is used, there is very likely a
problem.
Parameters should be validated against a “positive” specification
that defines:
• Data type (string, integer, real, etc…)
• Allowed character set
• Minimum and maximum length
• Whether null is allowed
• Whether the parameter is required or not
• Whether duplicates are allowed
• Numeric range
• Specific legal values (enumeration)
• Specific patterns (regular expressions)

Testing Nature Subjective

Evidence

Findings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

12 DAN_AIKEN_GSNA

2.5. Broken Access Control Checklist

Access control, sometimes called authorization, is how a web application
grants access to content and functions to some users and not others. These
checks are performed after authentication, and govern what ‘authorized’ users
are allowed to do. Access control sounds like a simple problem but is
insidiously difficult to implement correctly. A web application’s access control
model is closely tied to the content and functions that the site provides. In
addition, the users may fall into a number of groups or roles with different
abilities or privileges. (OWASP, p.7)

Access control, or authorization, needs to be implemented in a careful, well-designed
way. If access control logic is spread out throughout the application code, it can be
very difficult to validate, test, and maintain.

One particular type of access control problem is associated with remote administration
interfaces. These interfaces could permit administrators to administer site users, data,
and content from a remote location. These interfaces will be attractive targets for
attackers.2

Table 2.2 – Broken Access Control Checklist (BA)

Identifier BA-1

Title Access Control Policy Review

Reference OWASP Top Ten (A2)

Risk Unauthorized access to data

Test
Procedure

Does a policy exist requiring centralized access control logic and defining
how it will be enforced?

Testing
Nature Objective

Evidence

Findings

Identifier BA-2

Title Access Control Design Documentation Review

Reference OWASP Top Ten (A2)

Risk Unauthorized access to data

2 Broken Authentication and Session Management references:

• OWASP Guide to Building Secure Web Applications and Web Services, Chapter 8: Access Control and Authorization:
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• Access Control (aka Authorization) in Your J2EE Application www.owasp.org/columns/jeffwilliams/jeffwilliams3
• www.infosecuritymag.com/2002/jun/insecurity.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 13

Test
Procedure

Does a document exist that defines the centralized access control logic for
the application and maintenance procedures?
Do web-based administrative interfaces allow administrators to manage the
application over the Internet?

Testing
Nature Objective

Evidence

Findings

Identifier BA-3

Title Check for Client Side Caching Controls

Reference OWASP Top Ten (A2)

Risk Unauthorized access to data

Test
Procedure

Run Achilles to log HTTP and HTML for the application
Set Internet Explorer’s Internet Options: (images from IE 6.0)
• Connections Tab: LAN Settings

o Check Use Proxy Server for your LAN

o Address: 127.0.0.1

o Port: 5000 (or any unused port if 5000 is in use)

o Click OK twice to save settings
Set Achilles options:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

14 DAN_AIKEN_GSNA

• Listen on Port: 5000 (or whatever port you entered in the browser)

• Check Intercept mode ON
• Check Log to File and name the log file
• Check Ignore .jpg/.gif

• Click on Run ()

Run the application as usual (the performance will be slower)
• Log in
• Select a screen with sensitive data
• Log out

Open the Log file

Check for HTTP Expires header with a past date

Check for Pragma: no-cache statement

Testing
Nature Objective

Evidence

Findings

2.6. Broken Authentication and Session Management Checklist

Authentication and session management includes all aspects of handling user
authentication and managing active sessions. Authentication is a critical aspect
of this process, but even solid authentication mechanisms can be undermined
by flawed credential management functions, including password change, forgot

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 15

my password, remember my password, account update, and other related
functions. Because “walk by” attacks are likely for many web applications, all
account management functions should require reauthentication even if the
user has a valid Session ID. (OWASP, p.9)

It has long been assumed that as long as a website or service is protected
using the Secure Sockets Layer (SSL), it is secure. However, we now know
that this is not true and now more than ever, it is critically important to
recognize that SSL is by no means a panacea. Security researchers have long
shown that the strength of any cryptographic approach is dependent on the
algorithms and key lengths used by the underlying primitives. Consequently,
the security of an SSL protected service is strongly correlated to the cipher
suite in use as part of the protocol. (Araujo)

Most web applications rely on User ID and Password for authentication. Stronger
authentication methodologies are available, but they are frequently cost prohibitive.

Maintaining state is necessary for web applications. Otherwise, the user would have to
re-authenticate with each web site request. Often the method chosen to maintain state
is implemented improperly, opening the site to session hijacking.

Authentication credentials and session tokens must be protected with SSL and
protected against disclosure from other flaws.3

Table 2.3 – Broken Authentication and Session Management Checklist (AS)

Identifier AS-1

Title Authentication and Session Management Policy Review

Reference OWASP Top Ten (A3)

Risk Improper access to restricted data

Test
Procedure

Does a policy exist defining how the application securely manages
user credentials and session management?

Testing
Nature Objective

Evidence

Findings

Identifier AS-2

3 Broken Authentication and Session Management references:

• OWASP Guide to Building Secure Web Applications and Web Services, Chapter 6: Authentication and Chapter 7: Managing User
Sessions: prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• White paper on the Session Fixation Vulnerability in Web-based Applications: www.acros.si/papers/session_fixation.pdf
• White paper on Password Recovery for Web-based Applications - fishbowl.pastiche.org/archives/docs/PasswordRecovery.pdf

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

16 DAN_AIKEN_GSNA

Title Authentication and Session Management Design Review

Reference OWASP Top Ten (A3)

Risk Improper access to restricted data

Test
Procedure

Does a design document exist defining how the application securely
manages user credentials and session management? The design
document should cover:
• Password Strength (minimum length, complexity, periodic

changes, reuse)
• Password Use (lockout, logging failed attempts, failure error

messages, display of last login date and time)
• Password Change Controls (single mechanism; old and new

passwords required; if forgotten passwords are e-mailed to users,
reauthentication must be required for changing e-mail address)

• Password Storage (stored in hashed or encrypted form, no hard-
coded passwords in code)

• Protecting Credentials in Transit (encrypt entire login transaction
using SSL)

• Session ID Protection (entire session protected by SSL; session
IDs never included in URLs; long, complicated, random numbers
for Session IDs that cannot be easily guessed)

• Account Lists (not displaying account names to users)
• Browser Caching (authentication and session data never

submitted as part of a GET, authentication pages should be
marked with all varieties of the no cache tag, autocomplete flag
set to false)

Testing
Nature Objective

Evidence

Findings

Identifier AS-3

Title Authentication and Session Management Code Review

Reference OWASP Top Ten (A3)

Risk Improper access to restricted data

Test
Procedure

Does the CRS code securely manage application user credentials
and session management? Assess how the code addresses:
• Password Strength (minimum length, complexity, periodic

changes, reuse)
• Password Use (lockout, logging failed attempts, failure error

messages, display of last login date and time)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 17

messages, display of last login date and time)
• Password Change Controls (single mechanism; old and new

passwords required; if forgotten passwords are e-mailed to users,
reauthentication must be required for changing e-mail address)

• Password Storage (stored in hashed or encrypted form, no hard-
coded passwords in code)

• Protecting Credentials in Transit (encrypt entire login transaction
using SSL)

• Session ID Protection (entire session protected by SSL; session
IDs never included in URLs; long, complicated, random numbers
for Session IDs that cannot be easily guessed)

• Account Lists (not displaying account names to users)
• Browser Caching (authentication and session data never

submitted as part of a GET, authentication pages should be
marked with all varieties of the no cache tag, autocomplete flag
set to false)

Testing
Nature Subjective

Evidence

Findings

Identifier AS-4

Title Check SSL Strength

Reference www.foundstone.com

Risk Disclosure of sensitive data

Test
Procedure

Run SSLDigger against the web site
• Open SSLDigger application

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

18 DAN_AIKEN_GSNA

• Enter URL of the site to be audited in the Address field
• Click Go
• Answer Yes to save and view the report
• Specify where report file should be stored
• Answer Yes again to view the report

Display File | Properties for the site home page
• Check the Connection information
• 128-bit encryption or better is required

Testing
Nature Objective

Evidence

Findings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 19

2.7. Cross-site Scripting (XSS) Flaws Checklist

Cross-site scripting (sometimes referred to as XSS) vulnerabilities occur when
an attacker uses a web application to send malicious code, generally in the
form of a script, to a different end user. These flaws are quite widespread and
occur anywhere a web application uses input from a user in the output it
generates without validating it.

An attacker can use cross-site scripting to send malicious script to an
unsuspecting user. The end user’s browser has no way to know that the script
should not be trusted, and will execute the script. Because it thinks the script
came from a trusted source, the malicious script can access any cookies,
session tokens, or other sensitive information retained by your browser and
used with that site. These scripts can even rewrite the content of the HTML
page. (OWASP, p.11)

In addition to the validation audits using the Unvalidated Input checklists, one of the
most effective protections is to convert certain characters to prevent executable script
from being sent to the browser.

Table 2.4 – Cross-site Scripting (XSS) Flaws Checklist (XS)

Identifier XS-1

Title Output Encoding

Reference OWASP Top Ten (A4)

Risk Loss of user confidence and undetected malicious input

Test Procedure

Check output routines for the presence of output encoding routines
converting the following characters:

From To

< <

> >

((

))

#

& &

Testing Nature Objective

Evidence

Findings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

20 DAN_AIKEN_GSNA

2.8. Buffer Overflows Checklist

Attackers use buffer overflows to corrupt the execution stack of a web
application. By sending carefully crafted input to a web application, an attacker
can cause the web application to execute arbitrary code – effectively taking
over the machine. Buffer overflows are not easy to discover and even when
one is discovered, it is generally extremely difficult to exploit. Nevertheless,
attackers have managed to identify buffer overflows in a staggering array of
products and components. (OWASP, p.13)

Buffer Overflow flaws can be found in the web and application server software and
these flaws become widely known, but they are outside of the scope of this audit. We
are concerned here with buffer overflow flaws that may be found in CRS. However,
Java and J2EE applications are not vulnerable to buffer overflow attacks.4

Table 2.5 – Buffer Overflows Checklist (BO)

Identifier BO-1

Title Input Length Edits

Reference OWASP Top 10 (A5)

Risk Corruption of application execution

Test Procedure

If the application is not a Java or J2EE application (Java and J2EE
applications are not vulnerable to buffer overflow attacks), review all
code that accepts input using HTTP requests for size checking for
all such input

Testing Nature Objective

Evidence

Findings

2.9. Injection Flaws Checklist

Injection flaws allow attackers to relay malicious code through a web
application to another system. These attacks include calls to the operating
system via system calls, the use of external programs via shell commands, as
well as calls to backend databases via SQL (i.e., SQL injection). Whole scripts
written in perl, python, and other languages can be injected into poorly
designed web applications and executed. Any time a web application uses an
interpreter of any type there is a danger of an injection attack. (OWASP, p.14)

4 Buffer Overflow references:

• OWASP Guide to Building Secure Web Applications and Web Services, Chapter 10: Data Validation
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• Aleph One, “Smashing the Stack for Fun and Profit”, www.phrack.com/show.php?p=49&a=14
• Mark Donaldson, “Inside the Buffer Overflow Attack: Mechanism, Method, & Prevention”, rr.sans.org/code/inside_buffer.php

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 21

If a web application uses operating system functions or external programs to perform
its functions, and passes http input to the external function, the http input must be
carefully scrubbed. Otherwise, the application may be open to injection flaws. The
consequences could range from the trivial to complete system compromise or
destruction. Since the use of external functions is common, the likelihood of the web
application having an injection flaw should be considered very high.5

Table 2.6 – Injection Flaws Checklist (IF)

Identifier IF-1

Title Injection Flaws Code Review

Reference OWASP Top Ten (A6)

Risk Disclosure of sensitive data to complete takeover of the web site

Test Procedure

1. Review all code that calls outside programs or interpreters
• Verify that all supplied data is properly validated to protect

against malicious input
• Verify that all calls to the backend database use stored

procedures
2. Check to see that application is not running at a higher privilege

level than necessary
• For J2EE applications, verify that the application is using the

Java sandbox.

Testing Nature Subjective

Evidence

Findings

2.10. Improper Error Handling Checklist

Improper handling of errors can introduce a variety of security problems for a
web site. The most common problem is when detailed internal error messages
such as stack traces, database dumps, and error codes are displayed to the
user (hacker). These messages reveal implementation details that should
never be revealed. Such details can provide hackers important clues on

5 Injection Flaws references:

• Examples: A malicious parameter could modify the actions taken by a system call that normally retrieves the current user’s file to
access another user’s file (e.g., by including path traversal “../” characters as part of a filename request). Additional commands
could be tacked on to the end of a parameter that is passed to a shell script to execute an additional shell command (e.g., “; rm –r
*”) along with the intended command. SQL queries could be modified by adding additional ‘constraints’ to a where clause (e.g., “OR
1=1”) to gain access to or modify unauthorized data.

• OWASP Guide to Building Secure Web Applications and Web Services, Chapter 10: Data Validation
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• How to Build an HTTP Request Validation Engine (J2EE validation with Stinger) www.owasp.org/columns/jeffwilliams/jeffwilliams2
• Have Your Cake and Eat it Too (.NET validation) www.owasp.org/columns/jpoteet/jpoteet2

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

22 DAN_AIKEN_GSNA

potential flaws in the site and such messages are also disturbing to normal
users. (OWASP, p.16)

There are many error conditions that occur unavoidably, such as out of memory or
resource unavailable conditions. In these cases, the error messages should follow a
carefully thought out format, with helpful information to the user, useful information to
the administrator or developer, and no meaningful information to an attacker.

One common error-handling problem occurs when the application “fails open.” Access
to system and application resources should always be denied until specifically granted
(application will “fail closed”), access should never be granted until specifically denied
(i.e., “fail open”).6

Table 2.7 – Improper Error Handling Checklist (IE)

Identifier IE-1

Title Error Handling Policy Review

Reference OWASP Top Ten (A7)

Risk Disclosure of application implementation details

Test Procedure
Is there a policy that documents how errors should be handled?
Does it require that error messages reveal only necessary
information?

Testing Nature Objective

Evidence

Findings

Identifier IE-2

Title Sign On Error Testing

Reference OWASP Top Ten (A7)

Risk Disclosure of valid User IDs – useful for harvesting User IDs

Test Procedure Enter bad User ID and Password, valid User ID and bad password
• Time the responses to see if they are the same
• Check error responses to see if they are identical, including the

HTML code

Testing Nature Objective

Evidence

Findings

6 Improper Error Handling references:

• OWASP discussion on generation of error codes: www.owasp.org/documentation/guide/

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 23

Identifier IE-3

Title Consistent Error Handling Code Review

Reference OWASP Top Ten (A7)

Risk Disclosure of application implementation details

Test Procedure Check the code for consistent and appropriate error handling and
error messages

Testing Nature Subjective

Evidence

Findings

2.11. Insecure Storage Checklist

Most web applications have a need to store sensitive information, either in a
database or on a file system somewhere. The information might be passwords,
credit card numbers, account records, or proprietary information. Frequently,
encryption techniques are used to protect this sensitive information. While
encryption has become relatively easy to implement and use, developers still
frequently make mistakes while integrating it into a web application.
Developers may overestimate the protection gained by using encryption and
not be as careful in securing other aspects of the site. (OWASP, p.18)

Some common instances of insecure storage are:

• Failure to encrypt critical data
• Insecure storage of keys, certificates, and passwords
• Improper storage of secrets in memory
• Poor sources of randomness
• Poor choice of algorithm
• Attempting to invent a new encryption algorithm
• Failure to include support for encryption key changes and other required

maintenance procedures

Encryption is normally used to protect a site’s most sensitive assets. A failure here can
have devastating consequences.7

Table 2.8 – Insecure Storage Checklist (IS)

7 Insecure Storage references:

• OWASP Guide to Building Secure Web Applications and Web Services
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

• Bruce Schneier, “Applied Cryptography”, 2nd edition, John Wiley & Sons, 1995.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

24 DAN_AIKEN_GSNA

Identifier IS-1

Title Secure Storage Policy Review

Reference OWASP Top Ten (A8)

Risk Disclosure of sensitive data

Test Procedure

Review the policy to see if it requires appropriate protection of
sensitive information.
• Does it require the use of encryption algorithms that are strong

and that have been publicly tested?

Testing Nature Objective

Evidence

Findings

Identifier IS-2

Title Secure Storage Design Specification Review

Reference OWASP Top Ten (A8)

Risk Disclosure of sensitive data

Test Procedure

Check the design specification for the requirement to protect
sensitive information.
• Verify that it specifies encryption algorithms that are strong and

that have been publicly reviewed.

Testing Nature Objective

Evidence

Findings

Identifier IS-3

Title Secure Storage Code Review

Reference OWASP Top Ten (A8)

Risk Disclosure of sensitive data

Test Procedure

Review source code to see how the cryptographic functions are
implemented. Check how passwords, keys, and other sensitive
information is:
• Stored
• Protected
• Loaded
• Processed
• Cleared from memory

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 25

Information must be protected using strong encryption methods

Testing Nature Subjective

Evidence

Findings

2.12. Denial of Service Checklist

Web applications are particularly susceptible to denial of service (DoS)
attacks._…_A web application can’t easily tell the difference between an attack
and ordinary traffic. There are many factors that contribute to this difficulty, but
one of the most important is that, for a number of reasons, IP addresses are
not useful as an identification credential. Because there is no reliable way to
tell where an HTTP request is from, it is very difficult to filter out malicious
traffic. For distributed attacks, how would an application tell the difference
between a true attack, multiple users all hitting reload at the same time (which
might happen if there is a temporary problem with the site), or getting
“slashdotted”8? (OWASP, p.20)

It is not difficult to overwhelm application resources (e.g., bandwidth, disk storage,
database connections, CPU, memory, or threads). There is a wide variety of these
attacks, and they can be easily launched. While it may not always be possible to
prevent such an attack, the application should make a successful attack as difficult as
possible.

DoS attacks against the network, such as SYN flood attacks, are beyond the scope of
this audit.9

Table 2.9 – Denial of Service Checklist (DS)

Identifier DS-1

Title Denial of Service Code Review

Reference OWASP Top Ten (A9)

Risk Exhaustion of application resources

Test Procedure

Check to see if requests are synchronized on the Session ID
• Are there limits on the resources that can be allocated for a

single session?
• Are there limits on the number of sessions per user?

8 “The Slashdot effect is the huge influx of Internet traffic to a website as a result of its being mentioned on Slashdot, a popular technology
news and information site.” (en.wikipedia.org/wiki/Slashdotted)
9 DoS references:

• OWASP Guide to Building Secure Web Applications and Web Services
prdownloads.sourceforge.net/owasp/OWASPGuideV1.1.1.pdf?download

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

26 DAN_AIKEN_GSNA

• Is a session limited to one request at a time?
• Does the application cancel prior requests when it receives a

new request from the same session?

Testing Nature Objective

Evidence

Findings

2.13. Hidden Content

The primary danger with hidden content is revealing information that could be useful to
an attacker.

Table 2.10 – Hidden Content Checklist (HC)

Identifier HC-1

Title Hidden Content Policy Review

Reference Auditing Web Servers and Applications (Rhoades, pp.90–103)

Risk Disclosure of unnecessary system information

Test Procedure
Review development policies for the requirement to limit hidden
content

Testing Nature Objective

Evidence

Findings

Identifier HC-2

Title Hidden Content Application Specifications Review

Reference Auditing Web Servers and Applications (Rhoades, pp.90–103)

Risk Disclosure of unnecessary system information

Test Procedure

Review application specifications for the requirement to limit hidden
content
• Are comments required to be removed from production code?
• Is unnecessary information restricted?

Testing Nature Objective

Evidence

Findings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 27

Identifier HC-3

Title Hidden Content Code Review

Reference Auditing Web Servers and Applications (Rhoades, pp.90–103)

Risk Disclosure of unnecessary system information

Test Procedure

Review the output from audit checklist step BA-3
• Check for comments or meta tags in client-side code
• Check for unnecessary information in server HTTP headers and

custom headers

Testing Nature Subjective

Evidence

Findings

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

28 DAN_AIKEN_GSNA

3. Audit Testing, Evidence, and Findings

The CRS application was audited using the checklists provided above. In order to keep
this document to a reasonable length, I have included only ten checklist items. I have
attempted to select those items that provide the most useful information. Seven of the
included checklist items involve code reviews. This is a time consuming and tedious
auditing method, but, because of the limited number of tools available to me to audit
web applications, I found it necessary to examine the code to determine the security
state of the application.

If it had been available to me, I would have run WebInspect using the OWASP Top
Ten policy to try tests against each of the listed vulnerabilities (see Appendix A). The
use of this or a similar commercial tool would have made this a stronger audit.

I have included findings for the following checklist items:

• UI-1 – Input Validation Policy Review
• UI-2 – Input Validation Design Documentation Review
• UI-3 – Input Validation Code Review
• BA-3 – Check for Client Side Caching Controls
• AS-3 – Authentication and Session Management Code Review
• AS-4 – Check SSL Strength
• XS-1 – Output Encoding
• IE-2 – Sign On Error Testing
• IE-3 – Consistent Error Handling Code Review
• IS-3 – Secure Storage Code Review

3.1. Unvalidated Input Checklist

Table 3.1 – Unvalidated Input Checklist (UI)

Identifier UI-1

Title Input Validation Policy Review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test
Procedure

Does a policy exist that requires the application to validate all input, including
the URL query string, headers, cookies, form fields, and hidden fields?

Testing
Nature

Objective

Evidence No overall development or coding policies of any kind were found.

Findings No input validation policy exists for CRS.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 29

Identifier UI-2

Title Input Validation Design Documentation Review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test
Procedure

Does a design document exist requiring that valid values be verified for all
input, including the URL query string, headers, cookies, form fields, and
hidden fields?

Testing
Nature

Objective

Evidence Project documentation was reviewed, including the Standard Operating
Procedures used to develop CRS. The SOP on Standard Development Life
Cycle Planning mentions Security, but its focus was limited to the functional
ability to limit data and program access to authorized personnel and to protect
the integrity of CRS data by logging all changes. No mention was made of the
necessity to validate input data.
The SOP on Security requires User ID and Password authentication.
Authorization is required to be “user/role/context based.” The security interests
are confined to data privacy and integrity. Data validity is not mentioned.
The SOP on Physical and Network Security simply says that CRS must
comply with the proposed HIPAA security regulations. Security procedures
are simply, “To comply with all [hospital] procedures for security and the
privacy of patient information.”

Findings No input validation design specifications exist for CRS.

Identifier UI-3

Title Input Validation Code Review

Reference OWASP Top Ten (A1)

Risk Undetected malicious input

Test
Procedure

The simplest way to find uses of unvalidated input (tainted parameters) is
to have a detailed code review, searching for all the calls where
information is extracted from an HTTP request. (In a J2EE application,
these are the methods in the HttpServletRequest class.) Then follow the
code to see where that variable gets used. If the variable is not checked
before it is used, there is very likely a problem.
Parameters should be validated against a “positive” specification that
defines:
• Data type (string, integer, real, etc…)
• Allowed character set
• Minimum and maximum length

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

30 DAN_AIKEN_GSNA

• Whether null is allowed
• Whether the parameter is required or not
• Whether duplicates are allowed
• Numeric range
• Specific legal values (enumeration)
• Specific patterns (regular expressions)

Testing
Nature

Subjective

Evidence

CRS validates input, using client-side Java Script, for:
• Data Type
• Allowed character set – edits use the following regular expressions:

o Alphabetic: (/[^A-Za-z]/)

o Alphanumeric: (/[^A-Za-z0-9]/)

o Alphanumeric and underscore: (/[^A-Za-z0-9_]/)

o Alphanumeric and dash: (/[^A-Za-z0-9-]/)

o Alphanumeric, period, single quote, and space:
(/[^A-Za-z0-9\.'\s]/)

o E-mail (alphanumeric, @, period, underscore, and required format:
(/[a-z0-9_\-\.]+@[a-z0-9_\-\.]+\.[a-z]{2,3}$/i)

• Minimum and maximum length
• Whether the field is required or not
• Where feasible, the field values are selected from drop-down lists

For example, the following client-side code calls edit routines based on the
element type of each form element.

Switch (strElementType) {

case "typeAlpha" : strReturnValue =
IsAlphabet(elElement); break;

case "typeNum" : strReturnValue =
IsNumber(elElement); break;

case "typeString" : strReturnValue =
IsString(elElement); break;

case "typeDate" : strReturnValue =
IsValidDate(elElement, false); break;

case "typeDob" : strReturnValue =
IsValidDob(elElement); break;

case "typeName" : strReturnValue =
IsValidName(elElement); break;

case "typeSSN" : strReturnValue =
IsValidSSN(elElement); break;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 31

case "typeEMail" : strReturnValue =
IsValidEMail(elElement); break;

case "typeRadio" : strReturnValue =
IsRadioSelected(elElement); break;

case "typeUrl" : strReturnValue =
IsValidUrl(elElement); break;

case "typeAtLeastOne" : strReturnValue =
AtLeastOne(elElement, frmForm); break; }

Examples of the called edit routines are:

function IsValidName(elElement) {
var strReturnValue = "";

var strValue = elElement.value;

var strExp = /[^A-Za-z0-9.\-'\s]/;

if (strValue.search(strExp) >= 0) {

var DisplayName = elElement.displayName;

if (!DisplayName)

strReturnValue = "Field";

else

strReturnValue = DisplayName;

strReturnValue += " can only contain alphanumeric
characters, period(.), hyphen(-), space or single
quotes."; }

return strReturnValue; }

function IsAlphabet(elElement) {
var strReturnValue = "";

var strValue = elElement.value;

var strExp = /[^A-Za-z]/;

if (strValue.search(strExp) >= 0)

strReturnValue = "Field can only contain
alphabets.";

return strReturnValue; }

Both by interview and by code inspection, I verified that there is no server-
side data validation except for User ID and Password.

Findings
Client-side data validation offers no security benefits because it is very
easy to bypass. Since there is no server-side data validation, there is no
effective protection against malicious input.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

32 DAN_AIKEN_GSNA

3.2. Broken Access Control Checklist

Table 3.2 – Broken Access Control Checklist (BA)

Identifier BA-3

Title Check for Client Side Caching Controls

Reference OWASP Top Ten (A2)

Risk Unauthorized access to data

Test
Procedure

Run Achilles to log HTTP and HTML for the application
Set Internet Explorer’s Internet Options: (images from IE 6.0)
• Connections Tab: LAN Settings

o Check Use Proxy Server for your LAN

o Address: 127.0.0.1

o Port: 5000 (or any unused port if 5000 is in use)

o Click OK twice to save settings
Set Achilles options:

• Listen on Port: 5000 (or whatever port you entered in the browser)

• Check Intercept mode ON
• Check Log to File and name the log file
• Check Ignore .jpg/.gif

• Click on Run ()

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 33

Run the application as usual (the performance will be slower)
• Log in
• Select a screen with sensitive data
• Log out

Open the Log file

Check for HTTP Expires header with a past date

Check for Pragma: no-cache statement

Testing
Nature Objective

Evidence

In a response from the server that could contain sensitive data, the
following HTTP header was received:
--

POST . . . HTTP/1.0

Accept: . . .

Referer: . . .

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Connection: Keep-Alive

User-Agent: . . .

Host: . . .

Content-Length: 140

Cache-Control: no-cache
Cookie: . . .

HEADER_SELECTION= . . .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

34 DAN_AIKEN_GSNA

--

Findings

No Pragma: no-cache statement was found in HTML. One POST HTTP
submission contained a Pragma: no-cache statement, but no HTTP
response header contained it.
CRS sent a Cache-Control: no-cache response header when
replying to the POST transaction with the Pragma: no-cache statement.
According to Mark Nottingham, a Cache-Control: no-cache
statement has the following effect:

no-cache – forces caches to submit the request to the origin server
for validation before releasing a cached copy, every time. This is
useful to assure that authentication is respected (in combination
with public), or to maintain rigid freshness, without sacrificing all of
the benefits of caching. (Nottingham)

Since the cache only validates the page before redisplaying it, and does
not obtain new content, the sensitive patient content must still be cached
on the local disk, and thus is susceptible to being viewed by others.
The CRS cache control is not as secure as it would be if the header
contained Cache-Control: no-store or an Expires header with a
past date.

3.3. Broken Authentication and Session Management Checklist

Table 3.3 – Broken Authentication and Session Management Checklist (AS)

Identifier AS-3

Title Authentication and Session Management Code Review

Reference OWASP Top Ten (A3)

Risk Improper access to restricted data

Test
Procedure

Does the CRS code securely manage application user credentials and
session management? Assess how the code addresses:
• Password Strength (minimum length, complexity, periodic changes,

reuse)
• Password Use (lockout, logging failed attempts, failure error

messages, display of last login date and time)
• Password Change Controls (single mechanism; old and new

passwords required; if forgotten passwords are e-mailed to users,
reauthentication must be required for changing e-mail address)

• Password Storage (stored in hashed or encrypted form, no hard-
coded passwords in code)

• Protecting Credentials in Transit (encrypt entire login transaction using
SSL)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 35

• Session ID Protection (entire session protected by SSL; session IDs
never included in URLs; long, complicated, random numbers for
Session IDs that cannot be easily guessed)

• Account Lists (not displaying account names to users)

Testing
Nature Subjective

Evidence

Some password issues are user configurable in a configuration file
(sample values are shown):

PASSWORD_DURATION=90

LOGIN_ATTEMPTS_ALLOWED=3

ALPHA_CHARACTER_REQUIRED=yes

SPECIAL_CHARACTER_REQUIRED=yes

SESSION_INACTIVITY_THRESHOLD=500

USERNAME_LENGTH_MIN=8

USERNAME_LENGTH_MAX=99

PASSWORD_LENGTH_MIN=7

PASSWORD_LENGTH_MAX=20

CRS uses DESEncrypt from Oracle’s DBMS Obfuscation Toolkit to store
passwords. Unfortunately, Oracle’s DBMS Obfuscation Toolkit only
supports DES(56) encryption.

function desencrypt

 (p_input_string varchar2) return varchar2 is

 v_input_string varchar2(2048);

 v_encrypted_string varchar2(2048);

 v_multiple number;

begin

 v_multiple := trunc((length(p_input_string) / 8) +
1);

 v_input_string := rpad(p_input_string, 8 *
v_multiple, '@');

 dbms_obfuscation_toolkit.DESEncrypt(

 input_string => v_input_string,

 key_string => key_string,

 encrypted_string => v_encrypted_string);

 return v_encrypted_string;

end desencrypt;

Any user with administrative access (Data Administrator or Study
Administrator roles) can display a list of all users on CRS, including the
User ID (User History Report and Role User History Report).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

36 DAN_AIKEN_GSNA

User ID (User History Report and Role User History Report).

Findings

The password change process is protected by the use of SSL (but see
AS-4 below).
DES(56) encryption of passwords on the server in not secure enough to
protect this sensitive data.

NIST has determined that the strength of the Data Encryption
Standard (DES) algorithm, as specified in Federal Information
Processing Standard (FIPS) 46-3, (including Triple-DES keying
option 3 (1 key Triple-DES)) is no longer sufficient to adequately
protect Federal government information. (NIST)

In 1999, NIST recommended moving from DES to Triple-DES as an
interim measure while the new Advanced Encryption Standard (AES) was
being developed. In 2004, DES is inadequate for all uses.
User ID harvesting is easy for any user with Data Administrator or Study
Administrator roles. It is potentially available for any attacker who
upgrades their rights to an Administrator role.
Authentication and Session Management are vulnerable to attack.

Identifier AS-4

Title Check SSL Strength

Reference www.foundstone.com

Risk Disclosure of sensitive data

Test
Procedure

Run SSLDigger against the web site
• Open SSLDigger application

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 37

• Enter URL of the site to be audited in the Address field
• Click Go
• Answer Yes to save and view the report
• Specify where report file should be stored
• Answer Yes again to view the report

Display File | Properties for the site home page
• Check the Connection information
• 128-bit encryption or better is required

Testing
Nature Objective

Evidence

SSL Cipher Strength Report

Saturday, October 30, 2004 11:46:45 AM

Summary

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

38 DAN_AIKEN_GSNA

Number of Servers Tested 1

Number of Ciphers Used in Testing 26

 No Security 2

 Weak Security 10

 Strong Security 9

 Excellent Security 5

Ciphers Supported

Server URL
No

Security
Weak

Security
Strong

Security
Excellent
Security Grade

https://
xxx.xxxxxx.xxx:9999 0 3 0 0 C

Detailed Results (only Supported rows are shown)

Server: https://xxx.xxxxxx.xxx:9999

Grade C

Certificate
Details

Server Gated
Cryptography

Netscape SGC

Ciphers

OpenSSL
Name

Display Name
Export
Grade?

Strength Supported?

EXP-DES-
CBC-SHA

Key Exchange:
RSA(512);
Authentication:
RSA; Encryption:
DES(40); MAC:
SHA1

true
Weak

Security
true

EXP-RC4-
MD5

Key Exchange:
RSA(512);
Authentication:
RSA; Encryption:
RC4(40); MAC:
MD5

true
Weak

Security true

DES-CBC-
SHA

Key Exchange:
RSA;
Authentication:
RSA; Encryption:
DES(56); MAC:
SHA1

false
Weak

Security
true

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 39

Findings

The CRS SOP on Security requires 128-bit security.

Although CRS appears to support only 3 weak ciphers, the site has a
Server Gated Cryptography or Global ID server certificate. Use of such a
certificate generally implies that a minimum of 128-bit encryption will be
used.

However, when I displayed the page properties, the connection
information was:

SSL 3.0, DES with 56 bit encryption (Medium); RSA
with 512 bit exchange

CRS appears to be using 56-bit DES, a weak encryption level. (See the
note on DES in AS-3 Findings.) The DES(56) cipher is far below the
specified 128-bit minimum encryption level for CRS.
The audit finding is that weak SSL encryption is used by CRS.

3.4. Cross-site Scripting (XSS) Flaws Checklist

Table 3.4 – Cross-site Scripting (XSS) Flaws Checklist (XS)

Identifier XS-1

Title Output Encoding

Reference OWASP Top Ten (A4)

Risk Loss of user confidence and undetected malicious input

Test Procedure

Check output routines for the presence of output encoding routines
converting the following characters:

From To

< <

> >

((

))

#

& &

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

40 DAN_AIKEN_GSNA

Testing Nature Objective

Evidence

A search of all application code turned up one service routine that
converted “<” and “>” characters into “<” and “>”
respectively. However, this service routine was never called by any
other code. No other conversion was found in CRS code.

Findings
No protection is provided for the user from embedded executable
code in responses sent to the client.

3.5. Improper Error Handling Checklist

Table 3.5 – Improper Error Handling Checklist (IE)

Identifier IE-2

Title Sign On Error Testing

Reference OWASP Top Ten (A7)

Risk Disclosure of valid User IDs – useful for harvesting User IDs

Test Procedure

Enter bad User ID and Password, valid User ID and bad password
• Time the responses to see if they are the same
• Check error responses to see if they are identical, including any

hidden content

Testing Nature Objective

Evidence

With a bad User ID and Password, the response took 91 seconds.
The error message was,

With a valid User ID and a bad Password, the response took 91
seconds. The error message was,

Findings

While I might quibble with a 91-second response for an invalid logon
attempt as being unfriendly to users, there was no difference in
timing between the bad User ID and Password and the valid User ID
and bad Password. In addition, no information was provided that
would assist an attempt to harvest User IDs.

Identifier IE-3

Title Consistent Error Handling Code Review

Reference OWASP Top Ten (A7)

Risk Disclosure of application implementation details

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 41

Test Procedure
Check the code for consistent and appropriate error handling and
error messages

Testing Nature Subjective

Evidence

The Error Page includes the system logo. OnMouseOver, debug
error information is displayed. OnMouseOut the debug error
information is hidden.
<td class="FormText" align="center"
height="32"><img
src="/web_crs/images/Logor=Crs.gif" width="256"
height="20"
onMouseOver="MM_showHideLayers('errortext','',
'show')" alt="Crs Logo"
onMouseOut="MM_showHideLayers('errortext','',
'hide')">

Findings

Too much information is displayed to the user if they move the
mouse over the system logo. The information is of no use to a
legitimate user, but it provides too much system information to a
malicious user. This capability should be removed from production
code.

3.6. Insecure Storage Checklist

Table 3.6 – Insecure Storage Checklist (IS)

Identifier IS-3

Title Secure Storage Code Review

Reference OWASP Top Ten (A8)

Risk Disclosure of sensitive data

Test Procedure

Review source code to see how the cryptographic functions are
implemented. Check how passwords, keys, and other sensitive
information is:
• Stored
• Protected
• Loaded
• Processed
• Cleared from memory

Information must be protected using strong encryption methods

Testing Nature Subjective

Evidence
CRS uses SSL to protect authentication information in transit.
Unfortunately, the encryption level used is DES(56).

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

42 DAN_AIKEN_GSNA

CRS uses DESEncrypt and DESDecrypt from Oracle’s DBMS
Obfuscation Toolkit to store and retrieve passwords. Unfortunately,
Oracle’s DBMS Obfuscation Toolkit only supports DES(56)
encryption.
procedure add_user (p_app_user users.username%type

 ,p_username users.username%type

 ,p_last_name users.last_name%type

 ,p_first_name users.first_name%type

 ,p_middle_name users.middle_name%type

 ,p_title users.title%type

 ,p_display_name users.display_name%type

 ,p_email_address users.email_address%type

 ,p_password users.password%type) is
v_default_study_id number;

begin

 util_pkg.check_privilege(p_app_user,
'COMMUNITY', 1, null, 'Add-Edit Users');

 select default_study_id

 into v_default_study_id

 from users

 where username = p_app_user;

 insert into users (

 username,

 last_name,

 first_name,

 middle_name,

 title,

 display_name,

 email_address,

 password,

 default_study_id,

 created_by,

 date_created)

 values (

 p_username,

 p_last_name,

 p_first_name,

 p_middle_name,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 43

 p_title,

 p_display_name,

 p_email_address,

 util_pkg.desencrypt(p_password),

 v_default_study_id,

 p_app_user,

 sysdate);

end add_user;

function desencrypt (p_input_string varchar2)
return varchar2 is

 v_input_string varchar2(2048);

 v_encrypted_string varchar2(2048);

 v_multiple number;

begin

 v_multiple := trunc((length(p_input_string) /
8) + 1);

 v_input_string := rpad(p_input_string, 8 *
v_multiple, '@');

 dbms_obfuscation_toolkit.DESEncrypt(

 input_string => v_input_string,

 key_string => key_string,

 encrypted_string => v_encrypted_string);

 return v_encrypted_string;

end desencrypt;

There is no code to clear sensitive information from memory after
use. The cache direction, Cache-Control: no-cache does not
offer enough protection against caching sensitive information.

Findings

DES(56) encryption for SSL and the protection of passwords on the
server in not secure enough to protect this sensitive data.

NIST has determined that the strength of the Data Encryption
Standard (DES) algorithm, as specified in Federal Information
Processing Standard (FIPS) 46-3, (including Triple-DES
keying option 3 (1 key Triple-DES)) is no longer sufficient to
adequately protect Federal government information. (NIST)

In 1999, NIST recommended moving from DES to Triple-DES as an
interim measure while the new Advanced Encryption Standard
(AES) was being developed. In 2004, DES is inadequate for all
uses.
No code clears sensitive information from memory after use, and the
cache control is inadequate.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

44 DAN_AIKEN_GSNA

cache control is inadequate.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 45

4. Audit Report

4.1. Executive Summary

“The Gartner Group estimates that 70 percent of computer attacks are now aimed not
at individual networks, but at the applications that run on them.” (Roberts) Networks
may be secure, but most network security controls will not prevent attacks on Internet
applications because they see them as legitimate network traffic. The application itself
must determine if input data is valid and safe.

This is an audit of the Collaborative Research System (CRS), an Internet-based
application used for human studies medical research. The primary objective was to
assess the ability of CRS to protect patient and research information from outside
attacks against the most common Web application vulnerabilities.

The focus of this audit is the application itself. The security of the server and network
are critical to the security of the application, but they are outside the scope of this
audit.

The audit was conducted using available freeware or shareware tools and visual
inspection of the application’s development policies, design documentation, and
source code. The tools used were:

• SSLDigger – Foundstone developed SSLDigger to assess the strength of SSL
ciphers. (www.foundstone.com – look under Resources | Free Tools | S3i Tools)

• Achilles – Available from achilles.mavensecurity.com, Achilles is a publicly
released general-purpose web application security assessment tool. Achilles
acts as a HTTP/HTTPS proxy that allows a user to intercept, log, and modify
web traffic on the fly.

• Site Inspector – Available from www.paessler.com, Site Inspector is a Web site
and Web page analysis tool. It is an extension to IE 5 or later. Right-clicking on
a web page opens a context menu which displays Site Inspector options,
including:

o Show all forms (including hidden form fields)
o Show all scripts
o Show HTTP Header
o Show Complete Page Analysis
o Show Source based on DOM

• Multi-Edit – I used Multi-Edit as a code editor to view and search the source
code. The code was J2EE Java and JavaScript. I also used Multi-Edit to view
the Achilles log output because it formatted the log file, making it easy to follow.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

46 DAN_AIKEN_GSNA

Multi-Edit is available for a free 30-day trial from Multi Edit Software, Inc., at
www.multiedit.com.

In planning this audit, I decided to use the OWASP Top Ten Most Critical Web
Application Vulnerabilities list as a primary guide (Appendix A). All of the listed
vulnerabilities were within the scope of this audit except for Insecure Configuration
Management, which focused on the server configuration. I added one item that was
not in the OWASP list: Hidden Content.

Although it was necessary to perform a detailed review of CRS source code, which
required technical skills that will not exist for all auditors, the audit was successful in
determining the state of CRS’ security.

4.1.1. Positive Findings

CRS properly handled authentication errors.

• The response was identical for both a bad User ID and Password and for a
good User ID and bad Password.

• The user’s account is disabled after an administrator-specified number of failed
authentication attempts (currently set to three failed attempts).

4.1.2. Negative Findings

CRS failed most security audits. CRS does not provide satisfactory:

• Security policies and specifications

• Validation of input values

• Protection of sensitive information to prevent it from being accessible after it is
displayed on the user’s computer

• Protection of User ID values

• Encryption to protect passwords and other sensitive information while it is stored
by the application or in transit between the client’s browser and the application

• Protection against malicious scripts contained in information displayed to the
user

• Prevention of unnecessary, sensitive information being displayed to the user

4.2. Audit Findings

4.2.1. Terminology

To understand of this report, it is necessary to understand the following terms.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 47

HTTP – HyperText Transfer Protocol – Used to transfer data between the web browser
and the web server or to wrap the web server’s response. The key word here is “text”.
HTTP can be manipulated with any text editor. Web browsers send requests to web
servers using HTTP. The content of form fields (User ID, Password, application
information, etc.) are contained in the body of the HTTP request.

HTML – HyperText Markup Language – Used to control how the text is displayed by
the web browser. Once again, HTML is text that can be manipulated by any text editor.
Web servers respond with HTML, usually wrapped in HTTP.

SSL – Secure Socket Layer – Used to protect information in transit by establishing
encryption between the client’s web browser and the application’s web server.

While conducting this audit, I had access only to a test study with Data Administrator
and Study Administrator authority. In my access, I did not have access to any
production patient or study information.

4.2.2. Passed Audits

Table 4.1 – Error Handling

Background/Risk

Background: Improper error handling can introduce a variety of
security problems for a web site. The most common problem is
offering unnecessary information when errors occur; for
example, displaying the processing stack or call trace.
Risk: This information offers data that could help an attacker and
is unhelpful and irritating to users.

Root Cause

Error handling should be well thought out and consistent with an
application. This most effectively occurs during the design
phase. CRS offers no effective design specifications to assure
that errors are properly handled.

Test Results

• When I entered a bad User ID and a bad Password, and
when I entered a good User ID and a bad password, the
response took 91 seconds and displayed this error box:

There was no information that would be conveyed to an
attacker identifying when the User ID was good, and
therefore would not help the attacker who attempts to
harvest User IDs as part of an attack.

• CRS has a user setting specifying how many invalid logon
messages may be received before locking the user’s
account. The setting is currently set to three invalid logon
messages. This is acceptable protection against brute force
attacks repeatedly trying different User ID and Password
combinations to break into the application. However, this
could result in a Denial of Service (DoS) attack by locking
user accounts following three invalid logon attempts.
Administrator action is required to reset locked accounts.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

48 DAN_AIKEN_GSNA

messages. This is acceptable protection against brute force
attacks repeatedly trying different User ID and Password
combinations to break into the application. However, this
could result in a Denial of Service (DoS) attack by locking
user accounts following three invalid logon attempts.
Administrator action is required to reset locked accounts.

4.2.3. Failed Audits

Table 4.2 – Missing Application Security Policies

Background/Risk

Background: Policies should exist to require that web
applications are secure against the entire OWASP Top Ten list
of vulnerabilities.
Risk: It is unlikely that web applications will be secure in the
absence of attention to security in all stages of the system’s life
cycle, beginning with the underlying development policies and
continuing through all stages until system retirement.

Root Cause
CRS only gives cursory attention to security and no attention at
the policy level.

Test Results
CRS includes no overall development or coding policies of any
kind.

Table 4.3 – Missing Application Security Design Specifications

Background/Risk

Background: It is vital to have design documents that require
that the web application include good security practices to be
protected from the OWASP Top Ten list of vulnerabilities.
Risk: In the absence of good security requirements, web
applications are unlikely to be coded in a secure fashion.

Root Cause

CRS includes security requirements for:
• Authentication
• Authorization
• Transmission security (128-bit SSL encryption)
• Database create, update, and delete logging to assure data

integrity
• HIPAA compliance

There are many more topics that should be included in web
application security requirements:
• Input validation of all HTTP input, including requirements to

protect against cross-site scripting, injection, and buffer
overflow attacks

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 49

overflow attacks
• Centralized authentication and session management

processing
• Centralized authorization processing
• Consistent error handling
• Secure storage, including 128-bit or better encryption of

passwords or password hashes
• Limits on session-related resource usage to protect against

denial of service attacks
• No display of unnecessary information in HTTP headers,

custom headers, code comments, URLs, cookies, hidden
fields, error messages, or reports

Test Results CRS has inadequate security requirements.

Table 4.4 – Unvalidated Input

Background/Risk

Background: All input from HTTP requests must be validated
for appropriate content. Any input from and HTTP request can be
manipulated, including the URL, query string, headers, cookies,
and form fields, including hidden form fields.
Risk: Malicious input from any part of the HTTP request can
result in the compromise of the application, server, and network.
All sensitive information used and stored by the application is at
risk, as is any information stored by any other application or
server on the network.

Root Cause

CRS validates input on the client using JavaScript executed by
the web browser. Since any part of the HTTP request from the
web browser can be manipulated by a text editor after client-side
validation, validation on the client offers no security. Validation of
data from the HTTP request must be done server-side to provide
security. If client-side validation is used, it must be mirrored on
the server. See Appendix B for a diagram showing how one tool
(Achilles) can be used to manipulate text after it leaves the
browser and before it arrives at the server.

Test Results

Both by interview and by code inspection, I verified that there is
no server-side data validation except for User ID and Password.
CRS is at risk of being compromised by unvalidated malicious
input. An example of the client-side validation code is shown in
Appendix B.

Table 4.5 – Broken Access Control

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

50 DAN_AIKEN_GSNA

Background/Risk

Background: Access Control, sometimes called Authorization,
is the granting of access to information and functions to some
users and not to others. If Access Control is not done properly, a
user could gain inappropriate access by simply modifying the
HTTP request to ask for unauthorized content or functions, or
permit another user of the computer to gain access to sensitive
information that was cached inappropriately on the client
computer.
Risk: The consequences of a breakdown in Access Control can
be devastating. In addition to viewing inappropriate content,
inappropriate access might permit the user to modify or delete
content, perform inappropriate functions, or even gain site
administration privileges. Inappropriate caching could permit
another user of the computer to gain access to sensitive
information on the client computer.

Root Cause

CRS does not provide appropriate caching control to prevent
sensitive information from being stored on the client computer.
CRS uses an HTTP Cache-Control: no-cache statement in
an attempt to control caching. However, the no-cache value
only forces caches to submit a request to validate the content
before releasing a cached copy. That means that—even though
the Cache-Control: no-cache statement sounds like the
browser should not cache the content—sensitive content is
cached by the browser. (Nottingham)

Test Results

In response to a client request for sensitive information, CRS
sent a Cache-Control: no-cache statement in the HTTP
header. As explained above, the sensitive information is cached
anyway. See Appendix C for the HTTP header text.

Table 4.6 – Broken Authentication and Session Management

Background/Risk

Background: This audit looks at all aspects of handling user
authentication and managing active sessions; among these are
password strength, password use, password change, password
storage, protecting credentials in transit, session ID protection,
and account lists.
Risk: Improper authentication and session management can
result in granting access rights inappropriately. This can open
the application, server, and network to improper access or to
attack.

Root Cause
CRS has problems in two areas:
• Password storage – See Insecure Storage below.
• Protecting credentials in transit – CRS only supports three

weak ciphers for the protection of information in transit,
including user authentication credentials (DES(40), RC4(40),
and DES(56)). As noted above, none of these ciphers
provides sufficient protection for credentials in transit. See
Appendix D for a portion of the SSLDigger CRS report and
the page properties showing the use of weak DES(56) SSL
encryption.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 51

weak ciphers for the protection of information in transit,
including user authentication credentials (DES(40), RC4(40),
and DES(56)). As noted above, none of these ciphers
provides sufficient protection for credentials in transit. See
Appendix D for a portion of the SSLDigger CRS report and
the page properties showing the use of weak DES(56) SSL
encryption.

• Account lists – Anyone who is assigned a Data
Administrator or Study Administrator role has access to
reports that display all CRS User IDs, including application
administrator IDs. This is helpful for anyone harvesting User
IDs for an attack against the system. See Appendix D for the
report selection list that will display CRS User IDs.

Test Results

CRS uses DES 56-bit encryption for encrypting information in
transit. DES is insufficient protection for sensitive information.
CRS allows Data and Study Administrators to display all CRS
User IDs. This offers valuable information to anyone attempting
to harvest User IDs to attack the application.

Table 4.7 – Cross-site Scripting (XSS) Flaws

Background/Risk

Background: Cross-site scripting, or XSS, occurs when an
attacker sends malicious code, usually script code, as input to an
application that subsequently sends it out unchanged, to an end
user. The end user’s browser has no way to know that this text
should not be trusted since it comes from a trusted source—the
application—and the malicious code is executed on the user’s
system.
Risk: The malicious code could do anything the user has
authority to do, or take advantage of other system and network
flaws to promote itself to higher levels of authority. Potentially,
the attacker could gain full rights to the network and all its data.

Root Cause

All HTTP input, including all headers, cookies, query strings,
form fields, and hidden fields could potentially be used for an
XSS attack. All HTTP input must be verified to assure that it
contains only expected values. In addition, all text sent to a user
must have character values translated as shown to prevent it
from being executed as code by the receiving browser.

From To From To

< <))

> > # #

((& &

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

52 DAN_AIKEN_GSNA

Test Results

As stated previously, no server-side input validation is performed
by CRS. Although code exists in CRS to translate the “<” and “>”
characters as shown above, I could find no routines that called
that code. The other translations are not performed by CRS.

Table 4.8 – Improper Error Handling

Background/Risk

Background: Improper error handling can introduce a variety of
security problems for a web site. The most common problem is
offering unnecessary information when errors occur; for
example, displaying the processing stack or call trace.
Risk: This information offers data that could help an attacker and
is unhelpful and irritating to users.

Root Cause

Error handling should be well thought out and consistent with an
application. This most effectively occurs during the design
phase. CRS offers no effective design specifications to assure
that errors are properly handled.

Test Results

When a processing error occurs, CRS displays an error page
that includes the CRS logo. When the user moves the mouse
over the logo, debug error information is displayed. This
information is helpful to CRS support staff when investigating the
error, but could also be helpful to an attacker by displaying
internal application information. In addition, it is not information
that would be useful or helpful to a valid user. This information
should be written to an error log file for the use of the support
staff. See Appendix E for code from the error page that displays
the information when the mouse is moved over the CRS logo.

Table 4.9 – Insecure Storage

Background/Risk

Background: Web applications often have a need to store
sensitive information; for example, passwords or proprietary
information. Encryption is not difficult to use, but often it is
implemented improperly; for example, the encryption could be
weak or keys could be stored insecurely.
Risk: Sensitive information could be accessed and decrypted by
an attacker.

Root Cause

Encryption must be implemented with care:
• Used to protect sensitive information
• Well established and strong ciphers must be used
• Keys must be stored securely

Test Results CRS uses tools from Oracle’s DBMS Obfuscation Toolkit to
encrypt passwords. Unfortunately, the DBMS Obfuscation Toolkit
only supports DES(56) encryption, which, as noted above, is
inadequate today to protect sensitive information. See Appendix
F for an example of the code that encrypts passwords.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 53

encrypt passwords. Unfortunately, the DBMS Obfuscation Toolkit
only supports DES(56) encryption, which, as noted above, is
inadequate today to protect sensitive information. See Appendix
F for an example of the code that encrypts passwords.
Also, as noted above, a weak DES(56) cipher is used to protect
information in transit, and the cache is not properly controlled to
prevent the caching of sensitive information by the user’s
browser.

4.3. Audit Recommendations

Estimated costs are based on the following hourly rates. The estimated hours assume
the availability of analysts, designers, and coders who are already familiar with CRS
policies, specifications, functionality, and code.

Position Hourly Rates
Analyst $125
Designer $100
Coder $75

The OWASP Stinger project should prove particularly helpful for improving the input
validation of CRS. Stinger is a J2EE validation mechanism that can be downloaded at
no cost from the OWASP web site10.

Table 4.10 – Application Security Policies

Recommendation
Develop the appropriate policies to define appropriate application
security policies to cover the OWASP Top Ten list of
vulnerabilities.

Estimated Costs Two weeks of one analyst’s time = $10,000

Table 4.11 – Application Security Design Specifications

Recommendation

Develop the appropriate design specifications to meet the
application security policies. Input validation design
specifications should require the use of the OWASP Stinger
J2EE validation mechanism.

Estimated Costs Four weeks of one designer’s time = $16,000

10 OWASP Stinger — A J2EE HTTP Validation Engine. OWASP. URL: www.owasp.org/software/validation/stinger.html.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

54 DAN_AIKEN_GSNA

Table 4.12 – Input Validation

Recommendation
Develop server-side input validation routines using the OWASP
Stinger J2EE validation mechanism.

Estimated Costs Three weeks of one coder’s time = $9,000

Table 4.13 – Access Control

Recommendation

Develop code to make use of appropriate HTTP header
statements to prevent caching of sensitive information. One or
both of the following HTTP Header statements should be used
whenever sensitive information is sent to the user.
• Cache-Control: no-store

• Expires with a past date

Estimated Costs Two days of one coder’s time = $1,200

Table 4.14 – Authentication and Session Management

Recommendation

Make the following enhancements to CRS code:
• Upgrade SSL to support 128-bit ciphers. Remove support for

DES(40), RC4(40), and DES(56) ciphers.
• Change report menus or report formats so that User IDs are

only displayed to the CRS Administrator.

Estimated Costs Three weeks of one coder’s time = $9,000

Table 4.15 – Cross-site Scripting (XSS) Prevention

Recommendation

Upgrade all routines sending text to the User to make the
following character translations to eliminate the possibility of
sending executable script code to the user’s browser.

From To From To

< <))

> > # #

((& &

Estimated Costs One week of one coder’s time = $3,000

Table 4.16 – Error Handling

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 55

Recommendation

Write error information to an error log that is accessible to CRS
support staff. Remove the onMouseOver and onMouseOut
events from the production code for the CRS Logo displayed on
the Error Page.

Estimated Costs One day of one coder’s time = $600.

Table 4.17 – Secure Storage

Recommendation
Replace Oracle’s DBMS Obfuscation Toolkit with a third-party
tool that uses 128-bit or better cipher strength for encrypting
passwords

Estimated Costs One week of one coder’s time = $3,000

4.4. Compensating Controls

While the most effective protection against the OWASP Top Ten vulnerabilities is to
make the individual web application secure, it is an expensive process to retrofit
security into a production application. In the case of CRS, the conservative estimated
costs total $51,800.

In addition, if two or more web applications need to be secured, that cost can increase
rapidly.

Another security control that could offer satisfactory protection to an insecure web
application is an application firewall. Application firewalls inspect the information to and
from web applications looking for malicious or dangerous input and unnecessary or
dangerous output. Only safe, valid information is allowed to be sent to or from the
application.

There are a number of application firewall products that could offer protection for
existing and new web applications. Ten application firewall products have been rated
and compared by Network World Fusion
(www.nwfusion.com/bg/2004/appsecurity/_index.jsp). Prices for the reviewed products
range from $1,295 to $35,000.

Several higher-end application firewall products are shown below. There are additional
application firewalls available on the market that should also be considered. In any
case, it is easy to see that it could be far less expensive to implement an application
firewall than to retrofit security for CRS, without even considering any other web
applications that might also need to retrofit security.

• NC-1000 Application Security Gateway
$29,000

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

56 DAN_AIKEN_GSNA

”The NetContinuum Application Security Gateway delivers the highest level of
protection available for your critical applications — eliminating data theft, financial
fraud and loss of customer confidence due to web application attacks.”
www.netcontinuum.com/

• SecureSphere G4 Gateway and SecureSphere MX Management Server
$30,000
”The SecureSphere Dynamic Profiling Firewall family of appliances — including
the G4 Gateway and the MX Management Server — delivers a comprehensive
security solution that proactively identifies and blocks attacks that threaten your
mission-critical web-based enterprise applications and databases.”
www.imperva.com/products/securesphere/

• TrafficShield
$25-35,000
”TrafficShield is a Web Application Firewall that provides comprehensive,
proactive, application-layer protection against both generalized and targeted
attacks. TrafficShield employs a positive security model ('deny all unless
allowed') to permit only valid and authorized application transactions, while
automatically protecting critical Web applications from attacks such as Google
hacking, cross-site scripting, and parameter tampering.”
www.f5.com/f5products/products/TrafficShield/

• AppShield
$20,000
“AppShield, an automatic Web application firewall, provides enterprise-class
Web intrusion prevention for a failsafe defense against all application level
breaches. AppShield allows for easy application deployment in a secure
environment by intelligently identifying the legitimate requests made of an
ebusiness site and permitting only those actions to take place, enforcing the Web
and business logic of the site. By preventing, logging and alerting administrators
to any type of application manipulation through the browser, AppShield maintains
application behavior 24/7 without the need for signatures or rules.”
www.watchfire.com/products/appshield/default.asp

• Teros Secure Application Gateway
$25,000
”The Teros Secure Application Gateway does for Web and Web Services
applications what network firewalls do for the network. The Teros Gateway is a
hardened security appliance that is deployed directly in the data path of
application traffic and blocks attacks that are not detected by network-based
firewalls and intrusion detection systems. The Teros Gateway enforces a positive
security model that only permits correct application behavior, without relying on
attack signatures. It provides defenses for vulnerabilities that may exist within
custom applications, as well as the known weaknesses in commercially-
developed software.”
www.teros.com/products/appliances/gateway/index.shtml

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 57

• e-Gap Application Firewall
$23,000
”The e-Gap® Application Firewall enables organizations to rapidly deploy secure
web-based access to sensitive core applications. The System may be used to
protect e-business applications for customers or partners (such as eCRM, supply
chain integration or e-billing). It protects against known and unknown threats by
isolating application servers - via Air Gap technology - and tightly controlling
application layer access to them. It also significantly reduces the urgency to
patch production web servers. It unites all of the application-protection
components into a single application-centric appliance, and features automatic
learning of the application to generate and enforce application-level rule sets.
Encryption, authorization, authentication, PKI, HTTP payload screening,
automatic rule-set generation and a physical air gap all reside within an
integrated software/hardware platform.”
www.whalecommunications.com/site/Whale/Corporate/Whale.asp?pi=35

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

58 DAN_AIKEN_GSNA

Appendix A – Top 10 Most Critical Web Application Vulnerabilities

Ref. Vulnerability Description

A1 Unvalidated Input Information from web requests is not validated before
being used by a web application. Attackers can use
these flaws to attack backend components through a
web application.

A2 Broken Access Control Restrictions on what authenticated users are allowed
to do are not properly enforced. Attackers can exploit
these flaws to access other users' accounts, view
sensitive files, or use unauthorized functions.

A3 Broken Authentication
and Session
Management

Account credentials and session tokens are not
properly protected. Attackers that can compromise
passwords, keys, session cookies, or other tokens can
defeat authentication restrictions and assume other
users' identities.

A4 Cross-site Scripting
(XSS) Flaws

The web application can be used as a mechanism to
transport an attack to an end user's browser. A
successful attack can disclose the end user’s session
token, attack the local machine, or spoof content to
fool the user.

A5 Buffer Overflows Web application components in some languages that
do not properly validate input can be crashed and, in
some cases, used to take control of a process. These
components can include CGI, libraries, drivers, and
web application server components.

A6 Injection Flaws Web applications pass parameters when they access
external systems or the local operating system. If an
attacker can embed malicious commands in these
parameters, the external system may execute those
commands on behalf of the web application.

A7 Improper Error
Handling

Error conditions that occur during normal operation
are not handled properly. If an attacker can cause
errors to occur that the web application does not
handle, they can gain detailed system information,
deny service, cause security mechanisms to fail, or
crash the server.

A8 Insecure Storage Web applications frequently use cryptographic
functions to protect information and credentials. These
functions and the code to integrate them have proven
difficult to code properly, frequently resulting in weak
protection.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 59

Ref. Vulnerability Description

protection.

A9 Denial of Service Attackers can consume web application resources to a
point where other legitimate users can no longer
access or use the application. Attackers can also lock
users out of their accounts or even cause the entire
application to fail.

A10 Insecure Configuration
Management

Having a strong server configuration standard is
critical to a secure web application. These servers
have many configuration options that affect security
and are not secure out of the box.

(OWASP, pp.4)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

60 DAN_AIKEN_GSNA

Appendix B – Client-Side Validation

Achilles, by Maven Security, is an example of tools that can be used to intercept and
manipulate text between the web browser and the web server, even if the web browser
establishes a “secure” SSL link with the web server. The web browser thinks it is connected
to the web server, and the web server thinks it is connected to the web browser. In fact,
both are connected to Achilles. Achilles is a legitimate audit tool, but it—and products like
it—can be used maliciously to attack a web application.

Browser Web Server

AchillesSSL1 SSL2

The following code is an example of CRS client-side input validation.

Switch (strElementType) {

case "typeAlpha" : strReturnValue = IsAlphabet(elElement); break;

case "typeNum" : strReturnValue = IsNumber(elElement); break;

case "typeString" : strReturnValue = IsString(elElement); break;

case "typeDate" : strReturnValue = IsValidDate(elElement, false);
break;

case "typeDob" : strReturnValue = IsValidDob(elElement); break;

case "typeName" : strReturnValue = IsValidName(elElement); break;

case "typeSSN" : strReturnValue = IsValidSSN(elElement); break;

case "typeEMail" : strReturnValue = IsValidEMail(elElement);
break;

case "typeRadio" : strReturnValue = IsRadioSelected(elElement);
break;

case "typeUrl" : strReturnValue = IsValidUrl(elElement); break;

case "typeAtLeastOne" : strReturnValue = AtLeastOne(elElement,
frmForm); break; }

Examples of the called edit routines are:

function IsValidName(elElement) {
var strReturnValue = "";

var strValue = elElement.value;

var strExp = /[^A-Za-z0-9.\-'\s]/;

if (strValue.search(strExp) >= 0) {

var DisplayName = elElement.displayName;

if (!DisplayName)

strReturnValue = "Field";

else

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 61

strReturnValue = DisplayName;

strReturnValue += " can only contain alphanumeric characters,
period(.), hyphen(-), space or single quotes."; }

return strReturnValue; }

function IsAlphabet(elElement) {
var strReturnValue = "";

var strValue = elElement.value;

var strExp = /[^A-Za-z]/;

if (strValue.search(strExp) >= 0)

strReturnValue = "Field can only contain alphabets.";

return strReturnValue; }

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

62 DAN_AIKEN_GSNA

Appendix C – Cache Control HTTP Header Statement

POST . . . HTTP/1.0

Accept: . . .

Referer: . . .

Accept-Language: en-us

Content-Type: application/x-www-form-urlencoded

Connection: Keep-Alive

User-Agent: . . .

Host: . . .

Content-Length: 140

Cache-Control: no-cache
Cookie: . . .

HEADER_SELECTION= . . .

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 63

Appendix D – Authentication and Session Management

SSLDigger CRS report fragment:
Summary

Number of Servers Tested 1

Number of Ciphers Used in Testing 26

 No Security 2

 Weak Security 10

 Strong Security 9

 Excellent Security 5

Ciphers Supported

Server URL
No

Security
Weak

Security
Strong

Security
Excellent
Security

Grade

https://
xxx.xxxxxx.xxx:9999 0 3 0 0 C

Page properties fragment showing the use of DES 56-bit encryption for SSL.

CRS report selection list for Data Administrators and Study Administrators. Note the
User History Report and the Role User History Report: both display CRS User IDs.

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

64 DAN_AIKEN_GSNA

Appendix E – Error Handling

The Error Page includes the system logo. When the mouse is moved over the cursor,
debug error information is displayed. When the mouse is moved off of the cursor, the
debug error information is hidden.

<td class="FormText" align="center" height="32"><img
src="/web_crs/images/LogoCrs.gif" width="256" height="20"
onMouseOver="MM_showHideLayers('errortext','',
'show')" alt="Crs Logo"
onMouseOut="MM_showHideLayers('errortext','',
'hide')">

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 65

Appendix F – Secure Storage

procedure add_user (p_app_user users.username%type

 ,p_username users.username%type

 ,p_last_name users.last_name%type

 ,p_first_name users.first_name%type

 ,p_middle_name users.middle_name%type

 ,p_title users.title%type

 ,p_display_name users.display_name%type

 ,p_email_address users.email_address%type

 ,p_password users.password%type) is v_default_study_id number;

begin

 util_pkg.check_privilege(p_app_user, 'COMMUNITY', 1, null,
'Add-Edit Users');

 select default_study_id

 into v_default_study_id

 from users

 where username = p_app_user;

 insert into users (

 username,

 last_name,

 first_name,

 middle_name,

 title,

 display_name,

 email_address,

 password,

 default_study_id,

 created_by,

 date_created)

 values (

 p_username,

 p_last_name,

 p_first_name,

 p_middle_name,

 p_title,

 p_display_name,

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

66 DAN_AIKEN_GSNA

 p_email_address,

 util_pkg.desencrypt(p_password),

 v_default_study_id,

 p_app_user,

 sysdate);

end add_user;

function desencrypt (p_input_string varchar2) return varchar2 is

 v_input_string varchar2(2048);

 v_encrypted_string varchar2(2048);

 v_multiple number;

begin

 v_multiple := trunc((length(p_input_string) / 8) + 1);

 v_input_string := rpad(p_input_string, 8 * v_multiple, '@');

 dbms_obfuscation_toolkit.DESEncrypt(

 input_string => v_input_string,

 key_string => key_string,

 encrypted_string => v_encrypted_string);

 return v_encrypted_string;

end desencrypt;

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 67

Appendix G – Additional Resources

Bayuk, Jennifer. “Introducing Security at the Cradle, not the Grave.” April 6, 2003.
URL: www.sans.org/rr/audittech/Jennifer_Bayuk_WP.pdf (August 16, 2004)

Curphey, Mark, et. al. “A Guide to Building Secure Web Applications.” The Open Web
Application Security Project. September 11, 2002. URL:
aleron.dl.sourceforge.net/sourceforge/owasp/OWASPGuideV1.1.1.pdf
(September 12, 2004)

Elmenshawy, Maged, and David Meeh. “Systems and Controls to Make Information
Security Measurable and Relevant in a Global Enterprise.” SANS InfoSec Reading
Room. 2003. URL: www.sans.org/rr/audittech/Magid_Elmenshawy_WP.pdf
(August 28, 2004)

Graff, Mark G., and Kenneth R. van Wyk. Secure Coding: Principles and Practices.
O’Reilly & Associates: Sebastopol, CA. 2003.

Ihrer, Ken. “Database Security: Securing Oracle.” Information Security Magazine.
September 2000. URL:
infosecuritymag.techtarget.com/articles/september00/_features1.shtml
(November 21, 2004)

Jaquith, Andrew. “The Security of Applications: Not All Are Created Equal.”
February 2002. URL:
www.atstake.com/research/reports/acrobat/_atstake_app_unequal.pdf
(August 28, 2004)

Landwehr, Carl E., Alan R. Bull, John P. McDermott, and William S. Choi. “A
Taxonomy of Computer Program Security Flaws, with Examples.” September, 1994.
URL: www.cs.mdx.ac.uk/research/SFC/Papers/1994landwehr-acmcs.pdf
(September 12, 2004)

Meier, J.D., et. al. “Improving Web Application Security: Threats and
Countermeasures.” Microsoft MSDN Library. June 2003. URL:
msdn.microsoft.com/_library/default.asp?url=/library/en-
us/dnnetsec/html/ThreatCounter.asp (September 16, 2004)

OWASP2. “The OWASP Testing Project.” Draft Version 1.0. The Open Web
Application Security Project. July 2004. URL:
prdownloads.sourceforge.net/owasp/_TheOWASPTestingProjectPart1Draft.pdf?downl
oad (October 3, 2004)

OWASP3. “OWASP Web Application Penetration Checklist.” Version 1.1. The Open
Web Application Security Project. July 14, 2004. URL:

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

68 DAN_AIKEN_GSNA

prdownloads.sourceforge.net/_owasp/OWASPWebAppPenTestList1.1.pdf?download
(October 3, 2004)

SiegeWorks. “Application Audits.” Application Security. 2004. URL:
www.siegeworks.com/app-audits.html (September 8, 2004)

Soo Hoo, Kevin, Andrew Jaquith, and Dan Geer. “The Security of Applications,
Reloaded.” July 2003. URL:
www.atstake.com/research/reports/acrobat/_atstake_app__reloaded.pdf
(August 28. 2004)

Valois, Kim. “Making the Business Case for Security Controls in Very Tough Economic
Times.” 2003. URL: www.sans.org/rr/audittech/Kim_Valois_WP.pdf (August 16, 2004)

WASC. “Web Application Security Consortium: Threat Classification.” Web Application
Security Consortium. Last update: July 27, 2004. URL:
www.webappsec.org/tc/_WASC-TC-v1_0.pdf (September 19, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

DAN AIKEN, GSEC COLLABORATIVE RESEARCH SYSTEM
DECEMBER 15, 2004 GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1

DAN_AIKEN_GSNA 69

References

Araujo, Rudolph. “The Need for Strong SSL Ciphers.” Foundstone. July 2004. URL:
www.foundstone.com/resources/whitepapers_registration.htm?file=wp_ssldigger.pdf
(October 30. 2004)

Beales, J. Howard, III. “OWASP Updates its Top 10 List of Critical Web Application
Security Vulnerabilities.” EiP. January 2004. URL:
www.eipdistribution.com/_news.php?news_id=32 (September 19, 2004)

FDIC. Guidance on Developing an Effective Computer Software Evaluation Program to
Assure Quality and Regulatory Compliance. FDIC. November 16, 2004. URL:
www.fdic.gov/news/news/_financial/2004/fil12104.html (December 4, 2004)

Fredholm, William. Web Application Security – Layers of Protection. SANS Reading
Room. January 26, 2003. URL: www.sans.org/rr/papers/index.php?id=965
(November 27, 2004)

Hoelzer, David. Advanced System and Network Auditing. SANS. 2004.

Hulme, George V. “New Software May Improve Application Security.” Information
Week. February 9, 2001. URL: www.informationweek.com/story/_IWK20010209S0003
(September 13, 2004)

Levine, Matthew. “The Importance of Application Security.” April, 2002 (updated
January, 2003). URL:
www.atstake.com/research/reports/acrobat/_atstake_application__security.pdf
(August 25, 2004)

Loomis, Angela. “Auditing Web Applications for Small and Medium Sized Businesses.”
SANS InfoSec Reading Room, 2003. URL:
www.sans.org/rr/audittech/Angela__Loomis_WP.pdf (August 16, 2004)

NIST. “DES Transition – Request for Public Comment.” National Institute for Standards
and Technology, October 7, 2004. URL: csrc.nist.gov/cryptval/notices.htm
(November 27, 2004)

Nottingham, Mark. “Caching Tutorial.” Mark Nottingham’s home page. February 15,
2004. URL: www.mnot.net/cache_docs/. (November 21, 2004)

OWASP. “The Ten Most Critical Web Application Security Vulnerabilities.” The Open
Web Application Security Project. January 27, 2004. URL:
voxel.dl.sourceforge_.net/sourceforge/owasp/OWASPTopTen2004.pdf
(September 15, 2004)

©
 S

A
N

S
In

st
itu

te
 2

00
4,

 A
ut

ho
r r

et
ai

ns
 fu

ll
ri

gh
ts

.
Key fingerprint = AF19 FA27 2F94 998D FDB5 DE3D F8B5 06E4 A169 4E46

© SANS Institute 2004, As part of GIAC practical repository. Author retains full rights.

COLLABORATIVE RESEARCH SYSTEM DAN AIKEN, GSEC
GSNA PRACTICAL ASSIGNMENT, VERSION 3.2, OPTION 1 DECEMBER 15, 2004

70 DAN_AIKEN_GSNA

Rhoades, David. “Auditing Web Servers and Applications.” v. 1.8. Advanced System
and Network Auditing. SANS. 2004.

Roberts, Timothy. “Hackers Getting New Foe.” Silicon Valley / San Jose Business
Journal. February 16, 2004. URL:
sanjose.bizjournals.com/sanjose/stories/2004/02/_16/story2.html
(September 13, 2004)

SPI Dynamics. Description of “Security at the Next Level: Are Your Web Applications
Vulnerable?” 2004. URL: www.spidynamics.com/support/whitepapers/index.html
(November 13, 2004)

