
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

http://www.giac.org
http://www.giac.org

!
!

!
!
!

[VERSION!June!2012]!
!

! !

IDS: File Integrity Checking

GIAC (GSNA) Gold Certification

Author:!Lawrence!Grim,!ldgrim@gmail.com!
Advisor:!Robert Vandenbrink!

Accepted:!July!31,!2014!
!

!

!

Abstract!
The paper covers three, open-sourced, GNU General Public Licensed (GPL) file integrity
checking packages. The three applications are Another File Integrity Checker (AFICK),
Tripwire and Advanced Intrusion Detection Environment (AIDE). All three applications
have similar methods of comparing baseline and current file signatures, but differ on
execution and support. A short summary of the requirements for each package, a
discussion of the capabilities, functions, features and limitations are provided. The
comparison metrics for the three files integrity checkers are intended to be a deployment
decision matrix. The paper will provide criteria for deciding which package meets an
operational need.

Keywords: IDS, HIDS, File Integrity, Virus Detection, Computer Security

IDS: File Integrity Checking! 2
!

!

1. Introduction
 The file integrity checking application is a host-based intrusion detection software.

Host-based monitoring applications are “particularly effective at detecting insider misuse

because of the target data source’s proximity to the authenticated user” (Proctor, 2001, p.

50). A compromise of a system is often accompanied by alteration of files on the

system. A file integrity checker periodically validates existing file criteria against a

known, stored value to detect changes or modifications (SANS, 2009). The idea of

monitoring file usage was proposed in a seminal paper by James Anderson (Anderson,

1980). Rather than just the focus on tracking and controlling access to files, in the early

1990s, Gene Kim and Eugene Spafford focused on monitoring added, deleted or changed

files (Kim & Spafford, 1994). Their program, Tripwire, initially generated file signatures

and periodically compared that historical baseline against current status. This was the

anomaly detection intrusion detection model versus the misuse detection model (Jones &

Sielken, 1999).

2. Application Evaluation
This paper outlines general limitations to each of the three open-source file checking

applications, with comparison of the installation and operation of the applications. The

applications will be evaluated based on five criteria:

• Effectiveness and Efficiency

• Response and Timeliness

• Operational Requirements

• Deployment Needs and Capabilities

• Security

2.1. Limitations to File Integrity Checking
 The use of file integrity checking programs for intrusion detection and auditing have

several limitations. These include file signature bypass, static anomaly detection,

operating system environment restrictions and lack of change details. All three, open-

IDS: File Integrity Checking! 3
!

source file checking applications evaluated have these limitations. As such, limitations

can be discussed generically for these three open-source file integrity checking

applications.

2.1.1. File Signature Bypass
 The use of signatures, with a known generation method, can be defeated when a

compromise file is used to evade detection. Once a way has been found to avoid

detection by a security tool’s fingerprint designation, it can avoid detection by that

software at all sites (Forrest, Perelson, Allen, & Cherukuri, 1992). The normal file

integrity checking application may use a weak cryptographic algorithm. Legacy

algorithms such as MD5 were found to be flawed and easy to attack. An MD5 hash

value or digest can be duplicated from two different messages. This collision or

duplicate hash value can be generated for an MD5 hash digest in less than a minute with

a regular notebook computer (Klima, 2006). Using the default MD5 signature

generation, an evasion tool (Stripwire) was developed to specifically create files that

evade the normal Tripwire detection (Kaminsky, 2004). Having a wide variety of

simultaneous cryptographic generation algorithms can help to detect evasion through

signature weaknesses. Each of the open-source file integrity checking applications are

either restricted to a subset of cryptographic algorithms or deploy with a restricted set of

signature generation choices.

2.1.2. Static Anomaly Detection
 These three file integrity applications note that something has happened. However,

none of them note how a file was changed nor accurately when a change was made. One

of the faults with comparing benchmarked and current file characteristics is the idea of a

static anomaly detection. This method ignores activities within the intervening timeframe

where an undetected, but modified file would be executed. In fact, a file could be

changed, executed and be restored between integrity checks and go unnoticed. Ideally,

file change detection should occur when the binary or other code is being executed

(Nicholes, 2004). Expanding beyond just a historical file hash or signature, there have

been a variety of security controls recommended to validate or permit applications and

code to execute on an information system. These include “Digital Signature, Code

IDS: File Integrity Checking! 4
!

Signing, Watermarking,…” (Saha & Negatu, 2010, p. 1). Expanding to use these

techniques increases the security of the system. None of the three open source file

integrity checking programs went beyond historical hashes at pre-determined intervals.

2.1.3. Restricted Operating Environment
 The memory space allocated to the guest system by the host system, such as

/dev/kmem, would be unevaluated by a file integrity checking but would be a prime

avenue for exploitation of the guest system. These constantly, dynamically changing

files could not be compared with a file baseline. The file integrity checking application

on the guest or host system would be focused on detecting such dynamic changes to the

virtual machine’s files. “Checking the integrity of a program binary on disk … does not

ensure that the corresponding in memory image of that program has not been modified”

(Garfinkel & Rosenblum, 2003, p. 199).

2.1.4. Lack of Change Detail
 While important to identify changes to files in a timely manner, these file integrity

checkers do not provide information on how the file had changed. Just like an

unnecessary medical test might force unintended reactions, the modification alert from a

file integrity checker serves to identify the detection point instead of the chain of events

that caused the change. (King & Chen, 2005).

2.2. Environment
 A 64-bit base system, hosting three virtual machines, was built using Ubuntu 12.04

LTS. The default kernel for Ubuntu can be used with either a guest or host system with

the Xen virtual machine (Xen, 2014). The host evaluation system was built within a

firewalled, protected network. Because Xen virtual manager works best in a graphical

interface, the X11 X-Windows interface was used to access the headless host server.

The X11 client used was a NoMachine version 3 client, which now not offered on the

current site, but available through the Wayback Archive (NoMachine, 2009). Access to

the graphical user interface on the host machine was necessary both for using the Xen

virtual machine manager, but also to gather information from each of the virtual

machines, each hosting different file integrity checkers. Three virtual machines, running

64-bit Ubuntu 12.04, were setup as guests, each with a single CPU, 1GB memory, 8GB

IDS: File Integrity Checking! 5
!

IDE hard disk, cdrom, network interface, mouse, sound card and serial port. The initial

specifications of the bare bones Ubuntu LINUX virtual machines were captured and were

used as the baseline for disk usage during the application evaluations.

2.3. Comparison
 Each of the three file integrity checking programs were installed in their own virtual

system, as noted in the baseline comparison system. Points of comparison were gathered

during the installation that included cryptographic signature support, installation

resources, detection of changes, performance during operations, and deployment

considerations.

2.3.1. Comparison of Hash Algorithms for File Signatures
 As shown below, each of the three open source file integrity checking programs

supported a variety of message digest or hash algorithms for file signatures, with AIDE

have the widest choices.

m
d5

sha1

sha256

sha512

rm
d160

tiger

w
hirlpool

gost

crc32

haval

Citation

AFICK X X X X Gerbier, 2004
Tripwire X X X X Mir, 2000
AIDE X X X X X X X X X X von Haugwitz, 2013

Table 1: Supported Cryptographic Signatures

2.3.2. Basic Installation Notes
 After the installation, the space used for the application as well as the database was

noted, as shown below. Both AIDE and Tripwire increased the threat attack surface

from a basic Ubuntu LAMP server by requiring a mail server (PostFix). Both of these

two file integrity checking applications required the mail server. Without any further

guidance, the installation of the packages left the system with a mail server. Subsequent

changes to the PostFix installation would be required to make it a client-only mail

system. The third file integrity checking program, AFICK, did not email any reports and

did not require either a host or client mail capability.

 AFICK Tripwire AIDE
Space (1K blocks) 42,284 176,380 14,780

IDS: File Integrity Checking! 6
!

Database Size 2,650,332 3,050,628 4,656,697
Database Location /var/lib/afick/afick /var/lib/tripwire/<servername> /var/lib/aide
Files Indexed 16271 64,008 Unknown
cronjob created Yes, daily No Yes, daily
Mail Server (PostFix) No Yes Yes

Table 2: Initialization Requirements

2.3.3. Post-Installation Patching
 The guest operating system and installed IDS package were started a month earlier. As

a test of the performance of the file integrity checking applications, a significant amount

of identical changes had to be made to each system. Since that initial build and software

installation, there were packages upgraded and available for installation. For the PostFix

mail server IDS (Tripwire/AIDE), there were 174 packages, while the Perl-based AFICK

had only 171 packages upgraded. Applying this variety and volume of patches served as

a reasonable benchmark for measurements of the file integrity checking applications.

!
Figure 1: First Patch Session

 Execution of the upgrade and after a system reboot, disk usage was measured and

resulted in the following changes in disk utilization:
Changes AFICK Tripwire AIDE
/ +180,640 +185,480 +190,168
/dev n/c n/c n/c
/run n/c n/c n/c
/boot +12 +12 +12

Table 3: Disk Space After Significant Patching

 The changes to the file system noted after the patching verified that significant

changes occurred on the system because of the upgrades.

IDS: File Integrity Checking! 7
!

2.3.4. Large File Change Performance Metrics
 With the amount of changes generated by the package upgrade/update, the

performance of the three IDS file checking applications was measured during the system

scan and re-indexing. This data gathering was done with the XenState Perl script, ran on

the hosted domain (Lim, 2009). As noted, the Perl-script based AFICK used generally

less CPU resources than the next resource intensive file integrity checking program,

AIDE. Tripwire generally used a higher level of CPU cycles throughout the process than

the other two programs.

Figure 2: CPU Utilization During Update

 Running the update to the three IDS file integrity checking routines was monitored and

compared after the significant patch upgrade. Metrics from before and after the update were

gathered including disk utilization and file integrity database size. After the upgrades, file change

detection metrics were noted.
 AFICK Tripwire AIDE

1K
 B

lk
 Disk space (old) 1K 1,528,092 1,667,104 1,510,680

Disk space (new) 1K 1,531,872 1,668,264 1,525,488
Disk space (change) 1K 3,780 1,160 14,808

by
te

s

Database Size (old) bytes 2,650,332 3,050,628 4,656,697
Database Size (new) bytes 2,666,624 3,075,396 4,707,548
Database Size (change) bytes 16,292 24,768 50,851
Ratio Files/Size 1:1 2.3 : 1 1:1

 Files Scanned 16,431 64,398 59586
Files Changed 4676 17787 16603
Files New 223 510 521
Files Deleted 63 120 127
Files Other 106 17157 16603

 Execution Time 37 sec 71 sec 78 sec
 Files/Second Scanned ~440 ~915 ~760

Table 4: File Integrity Check after Update

IDS: File Integrity Checking! 8
!

 Results, both in database size and overall disk space usage clearly show AIDE using

the most disk space, while Tripwire created the most compact or efficient database.

Execution, based on files scanned per second, shows the optimization of the compiled

programs (Tripwire and AIDE) over the Perl-script based AFICK.

2.3.5. Protection of Binaries

!!!!!All! three! file! checking!programs!protected! their!own!binaries!after! the!baseline!

scan! of! the! system!determined! the! hash! signatures.! ! For! example,! the! first! action!

that! AFICK! completes! after! installation! is! calculation! of! the! file! signature! for! the!

program.! ! ! This! is! forced! during! the! installation! of! the! software! and! the! MD5!

signature! is!used!during! subsequent!executions!as!well! as! incorporated! in! the! file!

integrity!checking!report.!!!
Hash database created successfully. 16271 files entered.

MD5 hash of /var/lib/afick/afick => w7CCKrRrSS52LDtUH6N7bw
user time : 4.8; system time : 1; real time : 8

Figure 3: AFICK Binary Calculations

 During the installation of TripWire, the installation script asked for two passphrases,

both a minimum of eight characters in length. These passphrases were necessary for any

policy changes, to reload or initialize the product and other house-keeping tasks. The site

passphrase protected configuration and policy files, while the local passphrase protected

databases and report files (Natarajan, 2008). These passphrases subsequently prevented

changes to Tripwire’s configuration and policy files.
----------[snip]---------------
The Tripwire site and local passphrases are used to sign a variety of files, such as the
configuration, policy, and database files.
Passphrases should be at least 8 characters in length and contain both letters and
numbers.
See the Tripwire manual for more information.

The Tripwire site and local passphrases are used to sign a variety of files, such as the
configuration,policy, and database files.
Passphrases should be at least 8 characters in length and contain both letters and
numbers.
See the Tripwire manual for more information.
--!

Figure 4: Tripwire Passphrase Protection

!!!!!All! three! file! integrity! checking! programs! have! checksum! values! for! the!

downloadable!source!files,!whether!that!is!Perl!scripts!or!application!code.!!But!for!

the! AIDE! file! integrity! checking! software,! it! is! signed! and! stored! in! the! Ubuntu!

repository,!automatically!verified!during!the!download!and!installation.!!!!The!AFICK!

IDS: File Integrity Checking! 9
!

author! has! provided! a! copy! of! the! application! that! runs! off! of! a! CDROM! to! avoid!

having!the!application!changed.!!!

!!!!!While! all! three! programs! check! their! binaries! during! the! standard! file! system!

verification,! !AIDE!starts!out!more!secure!because!of! the!restricted!and!controlled!

source!of!the!application.!!TripWire!locks!up!the!configuration!and!policy!files!with!

passphrases!created!during! installation.! !AFICK,! though,!provides! the!highest! level!

of!program!binary!protection!from!start!through!execution!by!having!the!capability!

to!run!the!verified!application!executable!from!a!CDROM.!

2.3.6. Evaluation of Reporting
 Both Tripwire and AIDE generate email reporting on the results of a file integrity

check of the system. This is convenient as the report can be sent both internally to a

local user (such as root) or externally through the required mail server/client. Both

Tripwire and AIDE emails highlighted the files whose current file hash differed from the

baseline hash digest. The AIDE file integrity checking application generated a

voluminous log, which was difficult to read. To get a readable report of a Tripwire

session, there is a command that will generate a text report.

root@ubuntu-2:/# /usr/sbin/twprint --print-report --twrfile
/var/lib/tripwire/report/ubuntu-2.grim.enterprises-20140413-170159.twr >/root/2014-04-
13.txt

Figure 5: Generating a Tripwire Report

 The easiest reporting output was from the AFICK file integrity checking program in

that it generated a file with comma-separated-values (CSV) formatted data. This was easy

to export and process in a standard spreadsheet program such as Excel.

2.3.7. Configuration Restrictions
 Looking at the reports for all three applications, the identification of files was based

on the default configuration, not fine-tuning of the parameters for the setup. However,

some comment is necessary for the configuration file contents. AFICK uses suffixes to

exclude files from comparison checks, such as shown below:

IDS: File Integrity Checking! 10
!

text files
exclude_suffix := log LOG html htm HTM
txt TXT xml
help files
exclude_suffix := hlp pod chm
old files
exclude_suffix := tmp old bak
fonts
exclude_suffix := fon ttf TTF
images
exclude_suffix := bmp BMP jpg JPG gif
png ico
audio
exclude_suffix := wav WAV mp3 avi
Figure 6: AFICK File Exclusion Parameters

 The default setup for AFICK predefines very small or limited number of files and

directories, such as /bin, /boot, /etc, /lib and /root. Tripwire and AIDE are almost equal

in their default system coverage setup in their configuration files. Further comparison of

the output from each of the three file integrity checking products could develop a tuned

configuration to support this Ubuntu-base LAMP (Linux/Apache/MySQL/PHP)

installation. However, this paper does not need to level-set or balance the file integrity

checking coverage as the comparison has been made with files scanned per second and

database density metrics.

2.3.8. Deployment Restrictions
 All three programs are open source, so the deployment opportunities are based on the

code type for each application. AFICK, using Perl, has deployment on a variety of

platforms, including Windows, Linux, HP Unix AIX and Solaris (Gerber, 2013). The

last stable version was version 3.4, dated August 23, 2013 (York, 2002). Being a Perl

script, there is no compilation or other modifications for AFICK. This gives AFICK the

widest supported base of operating systems of the three, open-source file integrity

checking applications. The open source version of Tripwire has been last updated in

November, 2011 (Itripn & Stephd, n.d). Open-source Tripwire was the most difficult

installation of the three file integrity checking applications in the guest Ubuntu

environment. Tripwire had to be installed from binaries, with several critical changes to

the installation scripts (Tripwire-2.3.22, 2012). AIDE was an easy installation as it has

been in the Ubuntu repository since 2012, but could have been compiled from the open

source binaries (Canonical, 2014). For this paper’s comparison, no AIDE binaries were

compiled.

IDS: File Integrity Checking! 11
!

2.3.9. Application Update Comparisons
 The Ubuntu-tailored AIDE packages install from the Ubuntu software repository and

get automatic patches delivered with normal system maintenance. Neither of the other

two packages (AFICK or Tripwire) update with the normal Ubuntu update methods.

However, Tripwire can use updated external libraries with recompilation and

reinstallation. AFICK, however, relies upon the vendor for updates, which have to be

monitored and tracked separately. The AFICK developer does not use package

managers such as apt or rpm for software updates, but provides complete Perl scripts as

updates.

2.4. Criteria Comparison
Criteria AFICK Tripwire AIDE
Date of Software 2013 2011 2012

Effectiveness and Efficiency
File Scanning Speed 3 1 2
Scanning Rate 1 2 3
Database/File Ratio 2 1 3

Response and Timeliness
CPU Load 1 2 3
Database Size (smaller=better) 2 1 3
Automatic Daily Background Job 1 2 1

Operational Requirements
Multiple Platform Support 1 3 2
Installation Prerequisites 1 3 2
Ease of Reporting 1 3 2

Deployment Needs and Capabilities
Ease of Installation 1 3 2
Degraded Attack Surface 1 3 3
Multiple Platforms 1 3 3
Automatic Upgrades 2 3 1

Security
Message Digest Security 2 1 3
Protection of IDS Binaries 1 2 3
Protection of Integrity Database 1 2 1

Summary (lower is better) 21 35 37

Table 5: Three File Integrity Checker Comparison

3. Conclusion
 AFICK has the internal security, database protection and density, as well as ease of

use over the other two tested open source file integrity checking applications. For the

IDS: File Integrity Checking! 12
!

open source versions, AFICK also supports the largest number of operating systems.

Unlike the other two file integrity checking applications, AFICK does not require a mail

server to be installed on the host system that would increase the attack surface. Installing

additional software applications opened up new vulnerability vectors. Decreasing the

server’s overall security for a security package seemed counter-intuitive. The one major

advantage that Tripwire retains over the other two open source file integrity checking

utilities is the potential upgrade into a commercial package with enterprise support.

However, based on this paper’s evaluation, the recommendation would be to use AFICK

as the open source file integrity checking intrusion detection system.

IDS: File Integrity Checking! 13
!

4. References
Anderson, J.P. (1980). Computer Security Threat Monitoring and Surveillance [White

Paper]. Fort Washington, PA: James P. Anderson Co. Retrieved from
http://csrc.nist.gov/publications /history/ande80.pdf

Canonical (2014). “aide” package in Ubuntu [Wiki post]. On Ubuntu Packages.

Retrieved from https://launchpad.net/ubuntu/+source/aide

Denning, D.E. (1987) An Intrusion-Detection Model. IEEE Transactions on Software

Engineering, 13(2), pp. 222-232. doi: 10.1109/TSE.1987.232894

Forrest, S., Perelson, A., Allen, L. & Cherukuri, R. (1992). Self-nonself discrimination in

a computer. Proceedings of the 1994 IEEE Symposium on Research in Security and
Privacy, pp 202-212. Retrieved from http://people.scs.carleton.ca/~soma/ biosec/
readings/forrest-virus.pdf

Forrester, R. & Dudzinksi, S. (2013). Open Source Tripwire [Software Project]. On

SourceForge. Retrieved from http://sourceforge.net/projects/tripwire/

Garfinkel, T. & Rosenblum, M. (2003). A Virtual Machine Introspection Based

Architecture for Intrusion Detection. Proceedings of Network and Distributed Systems
Security Symposium, 2003, pp 191-206. Retrieved from http://citeseerx.ist.psu.edu/
viewdoc/download? doi=10.1.1.11.8367&rep=rep1&type=pdf

Gerbier, E. (2004). Manual page: afick.conf(5). Retrieved from https://web.archive.org/

web/ 20041027205459/http://afick.sourceforge.net/ afick.conf.5.html

Gerber, E. (2013). Another file integrity checker [Software Project). On SourceForge.

Retrieved from http://sourceforge.net/projects/afick/

Itripn & Stephd (n.d.). Open Source Tripwire®. On SourceForge. Retrieved from

http://sourceforge.net/projects/tripwire/files/tripwire-src/tripwire-2.4.2.2/

Jones, A. & Sielken, R. (1999), Computer System Intrusion Detection: A Survey [White

paper]. doi: 10.1.1.24.7802&rep=rep1&type=pdf

Kaminsky, D. (2004) MD5 to Be Considered Harmful Someday [White paper].

Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download? doi=10.1.1.58.8575&
rep=rep1&type=pdf

Kim, G. (2008). Virtualisation: Seven steps to a secure virtual environment. Network

Security, 8, pp. 14-18. doi:10.1016/S1353-4858(08)70098-9

IDS: File Integrity Checking! 14
!

Kim, G. & Spafford, E. (1994). Writing, Supporting, and Evaluating Tripwire: A
Publically Available Security Tool [White Paper]. Retrieved from
https://www.cerias.purdue.edu/assets/pdf/bibtex_archive/94-04.pdf

Klima, V. (2006). Tunnels in Hash Functions: MD5 Collisions Within a Minute (Report

2006/105) [White paper]. On IACR Cryptology Eprint Archive. Retrieved from
http://eprint.iacr.org/2006/105.pdf

Lim, J. (2009, September 28). Monitoring and logging CPU utilization of virtual

machines in XEN [Blog post]. On PHP Everywhere. Retrieved from
http://phplens.com/phpeverywhere/ ?q=node/view/266

Mir, R. (2000) IDS and Tripwire [PowerPoint presentation]. Retrieved from

http://www.iup.edu/WorkArea/DownloadAsset.aspx%3Fid%3D61177&sa=U&ei=jDJ
QU_DiOsKprAe9_YCIDQ&ved=0CCgQFjAA&sig2=Jli5kNV1QQlGGHGKEIQpgg
&usg=AFQjCNHf9GhCN5nBpb-6-_Tyrrv6u88QuQ

Natarajan, R. (2008, December 8). Tripwire Tutorial: Linux Host Based Intrusion

Detection System [Blog post]. On The Geek Stuff. Retrived from
http://web.archive.org/ web/20081219185410/http: //www.thegeekstuff.com/2008/12/
tripwire-tutorial-linux-host-based-intrusion-detection-system/

Nicholes, M.. (2004). Foundation for Secure Boot on Itanium 2 Systems. Retrieved from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.132.2897&rep=rep1&
type=pdf

NoMachine (2009). Download Get NX Software from No Machine. Retrieved from

http://web.archive.org/web/20091108233137/http://www.nomachine.com/
download.php

Proctor, P.E. (2001). Host-Based Intrusion Detection Systems. In The Practical

Intrusion Detection Handbook (pp. 49-77). Upper Saddle River, NJ: Prentice Hall.

Saha, S. & Negatu, A. (2010). Techniques for validation and controlled execution of

processes, codes and data: A survey [White Paper]. In Proceedings of 2010
International Conference on Security and Cryptography (SECCRYPT), pp. 1-9.
Retrieved from http://ais.cs.memphis.edu/ files/papers/SECRYPT-Paper9.pdf

SANS Institute (2009). Intrusion Detection FAQ: What is the role of a file integrity

checker like Tripwire in intrusion detection? Retrieved from http://web.archive.org/
web/ 20091010234537/http://www.sans.org/security-resources/idfaq/
integrity_checker.php

IDS: File Integrity Checking! 15
!

Tripwire-2.4.2.2 (2012, September 15). On Beyond Linux® From Scratch. Retrieved
from http://web.archive.org/web/20120920005313/http://www.linuxfromscratch.org/
blfs/view/svn/postlfs/tripwire.html

von Haugwitz, H. (2013). AIDE-Advanced Intrusion Detection Environment. On

SourceForge. Retrieved from http://aide.sorceforge.net

von Haugwitz, H. & Van De Berg, R. (2010). AIDE [Software Project]. On

SourceForge. Retrieved from http://sourceforge.net/projects/aide/

Xen (2014, March 17). On Community Help Wiki, Ubuntu Documentation. Retrieved

from https://help.ubuntu.com/community/Xen

York, D. (2002). Frequently Asked Questions about AFICK. On SourceForge.

Retrieved from http://afick.sourceforge.net/faq.html#installation0

!

