GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

Client Fingerprinting via Analysis of Browser
Scripting Environment

GIAC (GWAPT) Gold Certification

Author: Mark Fioravanti, mark.fioravanti.ii@gmail.com
Advisor: Aman Hardikar

Accepted: N/A, DRAFT

Abstract
An essential part of any Web Application Penetration Test that includes the
exploitation of clients is the ability to accurately fingerprint the end point. There
exists the ability to determine potentially unique characteristics of the client
through the innate scripting functions provided within each major browser. These
characteristics range from identifying the browser to the operating system (0/S).
The level of detail that can be obtained based on identified characteristics can range
from simply identifying the browser family to identifying the specific browser
version, O/S version and in some cases the processor architecture. With the use of
JavaScript, VBScript and Jscript, a fairly accurate fingerprint can be constructed of
the client system. Despite various browsers including the ability to spoof User
Agents and some plug-ins providing the ability to spoof various components of the
Document Object Model (DOM), there are still a number of ways that a web
application penetration tester can fingerprint the system. This paper details which
fingerprints can be collected and analyzed, as well as using specific fingerprints to
aid in the identification of specific clients.

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 2

1. Introduction

During a Web Application Penetration Test, it is important to test the security of
the clients that are interacting with the application. Although not all Web Application
Penetration Testing engagements include this activity, when it is performed it is essential
to properly identify the client that is being exploited. Beyond simply identifying the
browser, it is also important to identify the operating system (O/S) before attempting to
manipulate or exploit the client. An accurate assessment of the characteristics of the
client allows for the execution of optimized scripts and/or executing a few exploits
instead of executing all of the available exploits and hoping the client does not notice or

crash.

There are a few websites and projects which attempt to document the
functionality and behaviors of the various browsers. W3schools (w3schools.com)
provides an online tutorial for learning to write JavaScript code, and it provides
information when specific JavaScript functions have been implemented in each of the
major browsers. The Browser Security Handbook (Zalewski, 2009) defines a number of
test cases which can be used to identify specific families of browsers such as determining
if the browser is Microsoft Internet Explorer or Mozilla Firefox, but being able to
distinguish between Firefox 3.6.4 or 3.6.8. Another project is the docType project
(Google) which is attempts to enumerate the various objects and properties available
within each of the browsers. A significant amount of information is available but it is
similar to the Browser Security Handbook in that it only allows families of browsers to

be identified.

Browser fingerprinting techniques commonly use the User Agent string to
determine the client that is interacting with a web site, but all of the major browsers offer
various methods for changing this variable. Some browsers allow the User Agent to be
configured via the registry or via a configuration option while some browsers have plug-
ins which allows a large number of environment variables to be manipulated. The User
Agent string is only one of a large number of environment objects and methods which

can be used to determine the type of browser.

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 3

Beyond using the User Agent, there are a number of other properties available for
fingerprinting the client. Each browser provides its own scripting environment and based
on how the scripting environment interacts with scripts, the properties that are made
available to scripts, and the specific values that are provided it is possible to get an

accurate assessment of the browser and operating system.

2. Browser Scripting Environments

All major browsers support at least one scripting language. JavaScript is the
scripting language that is typically supported, although some browsers may partially or
fully support other languages such as JScript and Visual Basic Script (VBScript).
Support for other languages within a browser is handled by the installation or inclusion of

browser plug-ins, such as Java and ActionScript.

2.1. JavaScript

JavaScript is an implementation of the European Computer Manufacturers
Association (ECMA) Specification 262. JavaScript was originally developed under the
name of Mocha or LiveScript for the Netscape browser in 1995 (Netscape, 1995). The
current version of JavaScript is 1.9 (ECMAScript version 5). However, most browsers
do not support version 1.9 of JavaScript. They typically support at least version 1.3
(ECMAScript version 2).

2.1.1. Script Versions

JavaScript allows different versions of the scripting language to be executed
depending upon the version of JavaScript (JavaScript Kit). Originally this allowed
custom scripts to be executed based on the version of JavaScript, but since RFC4929
(Hoehrmann, 2006) this has been made obsolete. Most browsers still support the

controlled execution of JavaScript versions despite the changes recommended by the

RFC.
Script Tag Browser Execution
<script></script> The browser executes the script with
its default scripting engine and the
default language.
<script language="javascript"></script> The browser engine that is used to

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 4

<script language="jscript"></script> execute the script is controlled by the
language tag. JavaScript, Microsoft

JScript or Microsoft VBScript will be
executed.

<script language="vbscript"></script>

<script language="javascriptl.l"></script> The browser engine will only execute
the script if it supports that specific
version of the JavaScript language.

Table 2.1.1-1: Using Script Tags to Specify Different Languages in HTML

<script language="javascriptl.2"></script>

2.1.2. Scripting Environment

The scripting environment includes a number of objects available for determining
the nature of the browser that the script is executing within. The Document Object
Model (DOM) which allows scripts to interact with the HTML that is being presented to
the client via the ‘document’ object. The World Wide Web Consortium (W3C) maintains
the DOM standard (W3C, 2005). A number of non-standard objects exist that allow
scripts to interact with various aspects of the scripting environment, such as the window
object. Within the ‘window’ object there are a number of objects like history, location,
navigator and screen which can provide additional information about the client and none
of which are based on a formal standard (w3schools). Basic information about the
functions and properties available within a browser can be obtained at either the

w3schools tutorial site or the docType project (Google).

2.2. Microsoft Visual Basic Script (VBScript)

Microsoft VBScript is another scripting language that is implemented in only a
few browsers and is modeled on the Visual Basic language (also by Microsoft).
Microsoft VBScript was originally released in 1996, and like Microsoft JScript the
current version of the scripting engine is v5.8. Unlike JavaScript and JScript, VBScript is

not implemented to be compliant with ECMA-262 specification (Microsoft).

2.3. Microsoft JScript

Microsoft JScript is Microsoft’s implementation of the ECMA-262 specification,
and the current version of the scripting engine is version 5.8. When JavaScript is being
executed within the Microsoft Internet Explorer browser, it is actually being executed

with the JScript engine (Microsoft). By using the language attributes of the HTML script

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 5

tags, it is possible to strictly invoke the JScript functionality. There are a number of

ECMA-262 compliant and non-compliant features of the JScript language (Microsoft).

3. Collection

A number of different browsers and O/S combinations are possible and in order to
obtain sufficient coverage of relevant browser and O/S combinations, current market
share was used to identify the most common browsers and the most common O/Ss on the
Internet. Beyond identifying common desktop solutions, it is important to include mobile

devices as they are becoming increasingly common on the Internet (and in general).

3.1. Browsers

When determining which browsers to fingerprint, browsers were selected based
on two criteria; 1) overall browser market share (GlobalStats, 2010, NetMarketShare,
2010, and w3schools, 2010), and 2) overall browser share for an O/S family. It was

decided that the browsers listed in the following table would be used for collecting

fingerprints.

Browser Source Version(s)
Microsoft Internet http://www.microsoft.com 6.0, 7.0, 8.0, and 9.0
Explorer (Preview and Beta)
Mozilla Firefox http://www.mozilla.com 2.0.0.x, 3.0.x, 3.5.x, 3.6.%,

4.0 (Beta)
Apple Safari http://www.apple.com 4.0.x, and 5.0.x
Google Chrome http://chrome.google.com 2.x,3x,4%, 5%, 6.x,7.x
ASA Software Opera http://www.opera.com 10.x
KDE’s Konqueror Included within each 3.5.x,4.x
GNU/Linux and BSD
distribution

Table 3.2-1: Fingerprinted Web Browsers

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 6

3.2. Operating Systems

When determining which O/Ss to host the browsers on for the purposes of

fingerprinting, they were selected based on three criteria; 1) overall O/S market share, 2)

general O/S availability/patch accessibility, and 3) ease of install.

O/S Family Variants
Microsoft Windows XP Professional SP1, SP2, SP3
Vista Ultimate No SP, SP1, SP2
7 Ultimate No SP
Mac OS X Snow Leopard 10.6.2-4
10S iPhone, iPod Touch, iPad
GNU/Linux Fedora 11,12, 13, 14 (Alpha)
Ubuntu 8.04 LTS, 9.04, 9.10, 10.04 LTS,
10.10 (Beta)
CentOS 54,55
Sabayon 5.1,5.2
OpenSUSE 11.1,11.2, 11.3
Mandriva 2010
BSD FreeBSD PC-BSD

Table 3.2-1: Fingerprinted Operating Systems

In addition to collecting variants of the O/S versions, variant processor

architectures were collected; 32-bit (x86) and 64-bit (x86-64) architectures. Not all

freely available variants of the O/S were available in 64-bit versions.

3.3. Mobile Devices

Mobile devices are becoming more common and identifying and correctly

interacting with these types of devices will become more important as time passes. A

number of mobile devices were included in the sample of browsers and O/Ss.

Device

Browser

Variants

Android

Default Android Browser

Android 2.1, Android 2.2

ASA Software Opera Mini

5.1

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 7

Mobile 10.1

BlackBerry Default Blackberry 9630

Browser
Apple iPhone, iPod Touch, | Safari 4.0.x iPhone 3G 3.x, 4.x
1Pad 1Pod Touch 3.x, 4.x

iPad 3.2.x

ASA Software Opera Mini | 5.1
Nokia Internet Maemo Browser (MicroB) | Maemo 5
Tablet/Phone (N900,
N810, N800, N770)

ASA Software Opera Mobi 4

Table 3.2-1: Fingerprinted Operating Systems

3.4. Collection Page

A simple HTML page can be used to collect fingerprint information about a

browser. The collection page was hosted on an Internet accessible site to allow browsers

and mobile devices to access the page regardless of their network accessibility. The

collection page is designed such that multiple pages work to collect different aspects of

the browser’s scripting environment. The collection page is designed with the following

sections;

* Variable Initialization — various script variables are defined and initialized.

Variables are defined to allow information from VBScript and JScript sections to be

accessed by JavaScript.

* JavaScript Version Detection — individual scripts are executed to collect

information about the versions of JavaScript that the browser supports.

¢ JScript Detection — a versioning script is executed to determine the version of the

script engine and build number of the Microsoft JScript engine.

* VBScript Detection — a versioning script is executed to determine the version of the

script engine and build number of the Microsoft VBScript engine.

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 8

* Browser Objects and DOM Collection — multiple scripts are executed to test if
individual browser objects (navigator and window) and/or DOM properties exist. If
they exist, their values are recorded. When testing for specific objects, the object is
first tested to see if it exists within the environment. If the object does not exist, a
value of ‘undefined’ is returned for a value. If the object does exist, it is checked to
see if it has a value assigned to it, if it does not ‘dne’ is returned (e.g. the value is an

empty string so it does not exist), otherwise the value of the property is recorded.

* Variable Consolidation — the results of the various script tests are consolidated into

a single string for either display or submission.

* Collection/Submission — the resulting string is displayed in a textarea so that can be

inspected prior to submission.

When collecting some of the navigator properties it was noticed that some
browsers would crash during the collection of some navigator properties. The HTML
collection page was modified such that the document, navigator, and window properties
were collected via individual scripts to prevent a single script error from preventing the
collection of other information. The following HTML page was used to collect

information about each browser.

<html><head><title>Collect</title>
<script type="text/javascript">
<l--
var ver JS = 1.0;
var env_MJS = 'disabled'; var ver MJS = '0.0'; var bld MJS = -1; var
typ MJS = 'none';
var env_VBS = 'disabled'; var ver VBS = '0.0'; var bld VBS = -1; var
typ VBS = 'none';
var __n = navigator; var __d = document; var __w = window;
[/ ==>
</script>
<script language="Javascriptl.l">ver JS = 1.1;</script>
<script language="Javascriptl.2">ver JS = 1.2;</script>
<script language="Javascriptl.3">ver JS = 1.3;</script>
<script language="Javascriptl.4">ver JS = 1.4;</script>
<script language="Javascriptl.5">ver JS = 1.5;</script>
<script language="Javascriptl.6">ver JS = 1.6;</script>
<script language="Javascriptl.7">ver JS = 1.7;</script>
<script language="Javascriptl.8">ver JS = 1.8;var strAnTest = ' TXT
';if (strAnTest.trim) {ver JS = '1.8.1';}</script>
<script language="Javascriptl.9">ver JS = 1.9;</script>
<script language="Javascript2.0">ver JS = 2.0;</script>
<script type="text/jscript" language="JScript">

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 9

<l--

env_MJS = 'enabled';

ver MJS = ScriptEngineMajorVersion() + '.' +
ScriptEngineMinorVersion() ;

bld MJS = ScriptEngineBuildVersion();

typ MJS = ScriptEngine();

[/ ==>

</script>

<script type="text/vbscript" language="vbscript">
<l--

env_VBS "enabled"

ver VBS = ScriptEngineMajorVersion & "." & ScriptEngineMinorVersion

bld VBS = ScriptEngineBuildVersion

typ VBS ScriptEngine
[/ ==>
</script>
<script language="javascript" type="text/javascript">

var n_userAgent = 'exception';

n _userAgent = ((__n.userAgent) ? n.userAgent : ((_n.userAgent ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_appName = 'exception';

n_appName = ((_ n.appName) ? n.appName : ((_n.appName ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_appCodeName = 'exception';

n_appCodeName = ((_n.appCodeName) ? n.appCodeName
((__n.appCodeName == undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_appVersion = 'exception';

n_appVersion = ((__n.appVersion) ? _ n.appVersion : ((_n.appVersion
== undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_appMinorVersion = 'exception';

n_appMinorVersion = ((__n.appMinorVersion) ? _ n.appMinorVersion
((__n.appMinorVersion == undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_browserLanguage = 'exception';

n _browserLanguage = ((_n.browserLanguage) ? _ n.browserLanguage
((__n.browserLanguage == undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_cpuClass = 'exception';

n cpuClass = ((__n.cpuClass) ? n.cpuClass : ((__n.cpuClass ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

var n_systemLanguage = 'exception';

n_systemLanguage = ((__n.systemLanguage) ? _ n.systemLanguage
((__n.systemLanguage == undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 10

var n_language = 'exception';
n _language = ((__n.language) ? _ n.language : ((__n.language ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_buildID = 'exception';
n buildID = ((_n.buildID) ? _ n.buildID : ((_n.buildID ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_oscpu = 'exception';
n oscpu = ((_n.oscpu) ? _n.oscpu : ((_n.oscpu == undefined) °?
'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_platform = 'exception';
n platform = ((_n.platform) ? n.platform : ((_n.platform ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_product = 'exception';
n product = ((_n.product) ? n.product : ((_ n.product ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_productSub = 'exception';
n _productSub = ((_n.productSub) ? n.productSub : ((__n.productSub
== undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_userLanguage = 'exception';
n_userLanguage = ((__ _n.userLanguage) ? _ n.userLanguage
((__n.userLanguage == undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_userProfile = 'exception';
n _userProfile = ((_n.userProfile) ? 'present' : ((_n.userProfile ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_vendor = 'exception';
n vendor = ((_n.vendor) ? n.vendor : ((_n.vendor == undefined) ?
'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var n_vendorSub = 'exception';
n _vendorSub = ((_ n.vendorSub) ? n.vendorSub : ((_ n.vendorSub ==
undefined) ? 'undefined' : 'dne'))
</script>
<script language="javascript" type="text/javascript">
var strEnv = "Javascript/" + ver JS;
if (env_MJS == 'enabled') {
strEnv += " JScript/" + ver MJS + ((bld MJsS != -1) 2 (" JScript/"
+ bld MJs) : "");
}

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 11

if (env_VBS == 'enabled') {
strEnv += " VBScript/" + ver VBS + ((bld VBS != -1) ? ("
VBScript/" + bld VBS) : "");
}
var strvar = "";
if (_ w.opera) {
strVar += ((__w.opera.version()) ? (" Opera/" +
__w.opera.version()): "");
strVar += ((__w.opera.buildNumber()) ? (" Opera/" +
__w.opera.buildNumber ()): "");
}
strvar += ' ' + ((__d.all) 2 "" : "I") + 'd.all';
strvar += ' ' + ((__d.childNodes) ? "" : "!") + 'd.childNodes';
strvar += ' ' + ((__d.compatMode) ? "" : "I") 4+ 'd.compatMode';
strvar += ' ' + ((__d.documentMode) 2 "" : "!") +
'd.documentMode"';
strvar += ' ' + ((__d.getElementById) 2 "" : "!") +
'd.getElementById"';
strvar += ' ' + ((__d.getElementsByClassName) ? "" : "!I") +
'd.getElementsByClassName';
strvar += ' ' + ((__n.savePreferences) 2 "" : "!") +
'n.savePreferences’';
strvar += ' ' + ((__w.XMLHttpRequest) 2 "" : "!") +
'w.XMLHttpRequest';
strvar += ' ' + ((__w.globalStorage) 2 "" : "I"™) +
'w.globalStorage';
// strVar += ' ' + '#w.globalStorage';
strvar += ' ' + ((__w.postMessage) ? "" : "!") +

'w.postMessage';

strText = "navigator.userAgent: " + n userAgent + "\n";

strText += "navigator.appName: " + n_appName + "\n";

strText += "navigator.appCodeName: " + n_ appCodeName + "\n";

strText += "navigator.appVersion: " + n appVersion + "\n";

strText += "navigator.appMinorVersion: " + n_ appMinorVersion +
"\n";

strText += "navigator.browserLanguage: " + n browserLanguage +
"\n";

strText += "navigator.cpuClass: " + n _cpuClass + "\n";

strText += "navigator.systemLanguage: " + n_ systemLanguage +
"\n";

strText += "navigator.language: " + n_language + "\n";

strText += "navigator.buildID: " + n buildID + "\n";

strText += "navigator.oscpu: " + n _oscpu + "\n";

strText += "navigator.platform: " + n platform + "\n";

strText += "navigator.product: " + n product + "\n";

strText += "navigator.productSub: " + n productSub + "\n";

strText += "navigator.userLanguage: " + n userLanguage + "\n";

strText += "navigator.userProfile: " + n userProfile + "\n";

strText += "navigator.vendor: " + n vendor + "\n";

strText += "navigator.vendorSub: " + n vendorSub + "\n";

strText += "custom.scripting: " + strEnv + "\n";

strText += "custom.property: " + strvar + "\n";
</script>

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 12

</head><body>

<script type="text/javascript">

<!--
document.write ('<textarea cols="100" rows="25">\n"');
document.write (strText) ;
document.write ('</textarea>\n"') ;

//==>

</script>

</body></html>

Figure 3.3-1: Browser Collection Page

The page will contain the following properties when displayed.

navigator.userAgent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR N
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C)

navigator.appName: Microsoft Internet Explorer

navigator.appCodeName: Mozilla

navigator.appVersion: 4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0; .NET CLR
2.0.50727; .NET CLR 3.0.4506.2152; .NET CLR 3.5.30729; .NET4.0C)
navigator.appMinorVersion: 0

navigator.browserLanguage: en-us

navigator.cpuClass: x86

navigator.systemLanguage: en-us|

navigator.language: undefined

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: Win32

navigator.product: undefined

navigator.productSub: undefined

navigator.userLanguage: en-us

navigator.userProfile: undefined

navigator.vendor: undefined

navigator.vendorSub: undefined

custom.order:

custom.scripting: Javascript/1.3 JScript/5.8 JScript/22960 VBScript/5.8 VBScript/23000
custom.property: d.all d.childNodes d.compatMode d.documentMode d.getElementById !
d.getElementsByClassName !n.savePreferences w.XMLHttpRequest !w.globalStorage w.postMessage

|

Figure 3.3-2: Results of Viewing the Collection Page (Internet Explorer 8.0)

4. Analysis

O/Ss were loaded into virtual machines, each O/S had a number of different
browsers loaded, and the HTML collection page was opened in each browser. The
information collected was recorded into a plain text file and then the results were
organized by directory (Blackberry, Droid, IE, Firefox, Chrome, Safari, Opera, and

Konqueror).

The following script was used for analysis.

#!/bin/bash

if [-d Analysis]; then
rm -rf Analysis

fi

mkdir Analysis

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 13

for browser in *
do
if [-d Sbrowser]; then
if ["Sbrowser" != "Analysis"]; then
mkdir Analysis/S$browser

label="echo $browser | tr '[A-Z]' '[a-z]'"
count="1s S$browser/needlebeard-*.txt | wc -1°

echo mn
echo "S$browser (${count})"

if ["Scount" -gt "O0"]; then
for y in appName appCodeName appVersion appMinorVersion
browserLanguage buildID cpuClass language oscpu platform product
productSub systemLanguage userAgent userLanguage userProfile vendor

vendorSub
do
grep -1 "navigator.$y:" S${browser}/*.txt | perl -pi -e
's/\r\n?/\n/g' | sed -e "s/navigator\.Sy: //" | sed -e
"s/$browser\/needlebeard-//" | sed -e "s/\.txt:/ /" | sed -e "s/-/ /" |

sort | unigq | sed '/"$/d' > Analysis/S$Sbrowser/$label.navigator.S$y.index

grep —-ih "navigator.$y:" ${browser}/*.txt | perl -pi -e

's/\r\n?/\n/g' | sed -e "s/"“navigator\.Sy: //" | sort | unig | sed
'/~$/d' > Analysis/Sbrowser/S$label.navigator.Sy.values

z="wc -1 Analysis/S$browser/$label.navigator.$y.values | awk
"{print $1}'"

echo "[*] navigator.Sy (${z})"

while read 1i;

do
echo "$i" >> Analysis/S$Sbrowser/$label.navigator.$Sy.map
grep -lw "navigator.S$y: $i" ${browser}/*.txt | sed -e
"s/"~S$browser\/needlebeard-/ /" | sed -e "s/-/ /" | sed -e "s/\.txt$//"

| sort | unig | sed '/"S$/d' >>
Analysis/S$browser/$label.navigator.Sy.map
done < Analysis/S$browser/$label.navigator.$Sy.values
done

for y in scripting property

do
grep -1 "custom.S$y:" ${browser}/*.txt | perl -pi -e
's/\r\n?/\n/g' | sed -e "s/custom\.S$y: //" | sed -e
"s/Sbrowser\/needlebeard-//" | sed -e "s/\.txt:/ /" | sed -e "s/-/ /" |

sort | uniq | sed '/"$/d' > Analysis/S$browser/$label.custom.S$y.index

grep -ih "custom.S$Sy:" S${browser}/*.txt | perl -pi -e

's/\r\n?/\n/g' | sed -e "s/"“custom\.Sy: //" | sort | uniqg | sed '/"$/d'
> Analysis/$browser/$label.custom.$y.values

z="wc -1 Analysis/S$browser/$label.custom.S$y.values | awk
"{print $1}'"

echo "[*] custom.Sy (${z})"

while read 1i;
do

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 14

echo "$i" >> Analysis/S$browser/$label.custom.S$y.map
grep -lw "custom.S$y: $i" ${browser}/*.txt | sed -e
"s/”$browser\/needlebeard-/ /" | sed -e "s/-/ /" | sed -e "s/\.txt$//"
| sort | uniqg | sed '/"$/d' >> Analysis/S$Sbrowser/S$label.custom.S$y.map
done < Analysis/$browser/$label.custom.$y.values
done
fi
fi
fi
done

Figure 4-1: Collection Analysis Script

When the collection analysis script is executed, it will output information similar
to the following to the screen to provide information about the processing being

performed.

ackberry (2)

] navigator.appName (1)
] navigator.appCodeName (1)

] navigator.appVersion (2)

] navigator.appMinorVersion (1)
] navigator.browserLanguage (1)
] navigator.buildID (1)

] navigator.cpuClass (1)

] navigator.language (1)

] navigator.oscpu (1)

] navigator.platform (1)

] navigator.product (1)

] navigator.productSub (1)

] navigator.systemLanguage (1)
] navigator.userAgent (2)

] navigator.userLanguage (1)

] navigator.userProfile (1)

] navigator.vendor (1)

] navigator.vendorSub (1)

] custom.scripting (1)

] custom.property (1)

rome (320)

] navigator.appName (1)

] navigator.appCodeName (1)
] navigator.appVersion (136)
] navigator.appMinorVersion (1)
] navigator.browserLanguage (1)
] navigator.buildID (1)
] navigator.cpuClass (1)
] navigator.language (1)
] navigator.oscpu (1)

] navigator.platform (3)

] navigator.product (1)

] navigator.productSub (1)

] navigator.systemLanguage (1)
] navigator.userAgent (136)

] navigator.userLanguage (1)

© 2010 The SANS Institute

Mark Fioravanti, mark.fioravanti.ii@gmail.com

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment

15

[
[
[
[
[

X% % ok %
"

Droid (2)

*
—

L e M M Bl B B R R R e B e B s B e M e B e B
L I R R e S . S S S S S . i S

L L L L L L L L L L b L L L L L L L

irefox (521)

—

L S i . S . S D S S, S S, S S .

Y S VN S VS ST

F
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

navigator.
navigator.
navigator.
custom.scripting (1)
custom.property (2)

navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
custom.scripting (1)
custom.property (1)

navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
custom.scripting (3)
custom.property (4)

userProfile (1)
vendor (1)
vendorSub (1)

appName (1)
appCodeName (1)
appVersion (2)
appMinorVersion (1)
browserLanguage (1)
buildID (1)
cpuClass (1)
language (1)

oscpu (1)

platform (1)
product (1)
productSub (1)
systemLanguage (1)
userAgent (2)
userlLanguage (1)
userProfile (1)
vendor (2)
vendorSub (1)

appName (1)
appCodeName (1)
appVersion (18)
appMinorVersion (1)
browserLanguage (1)
buildID (339)
cpuClass (1)
language (13)

oscpu (11)

platform (8)
product (1)
productSub (184)
systemLanguage (1)
userAgent (471)
userLanguage (1)
userProfile (1)
vendor (10)
vendorSub (57)

At the end of the script execution two files were produced, 1) a file which

contains all of the different values which were seen for that field (given a .values

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute

Figure 4-2: Collection Analysis Script

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 16

extension), and a file which contains all of the different variants organized by value

(given a .map extension).

5. Results

By analyzing the output of the analysis scripts, a number of fingerprints have been
identified which allow the identification of various browsers, even despite some basic
attempts at changing the browser’s identity. Some browsers can only be identified by
their families, while others provide enough information to uniquely identify the browser,

the browser’s version, the O/S, the O/S’s version and the processor architecture.

5.1. Microsoft Internet Explorer

navigator.userAgent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; Media Center PC 6.0)

navigator.appName: Microsoft Internet Explorer
navigator.appCodeName: Mozilla

navigator.appVersion: 4.0 (compatible; MSIE 8.0; Windows NT 6.1;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; Media Center PC 6.0)

navigator.appMinorVersion: 0

navigator.browserLanguage: en-us

navigator.cpuClass: x86

navigator.systemLanguage: en-us

navigator.language: undefined

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: Win32

navigator.product: undefined

navigator.productSub: undefined

navigator.userLanguage: en-us

navigator.userProfile: undefined

navigator.vendor: undefined

navigator.vendorSub: undefined

custom.scripting: Javascript/1.3 JScript/5.8 JScript/16385 VBScript/5.8
VBScript/16385

custom.property: d.all d.childNodes d.compatMode d.documentMode
d.getElementById !d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage w.postMessage

© 2010 The SANS Institute

Figure 5.1-1: Internet Explorer 8.0 on Windows 7 Ultimate, x86 Processor

Microsoft Internet Explorer contains a number of features that allows it to be
uniquely distinguished from other browsers. By searching for either ‘MSIE’ or ‘Trident/’
in the navigator.userAgent property Internet Explorer can be identified. The ‘Trident/’

token is only present in Internet Explorer 7 or higher. Unlike all of the other browsers

Mark Fioravanti, mark.fioravanti.ii@gmail.com

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 17

that had signatures collected, it is the only one that supports JavaScript, JScript and

VBScript. Only JavaScript versions up to version 1.3 are supported by Internet Explorer.

Unlike JavaScript, the version of JScript and VBScript cannot be specified as part
of the script tag. The Microsoft JScript and VBScript environments provide the
ScriptEngineMajorVerion, ScriptEngineMinorVersion and ScriptEngineBuildVersion
properties, which can be used to obtain detailed information about the script engine. The
version of the script engine will be either be 5.6, 5.7 or 5.8 for Internet Explorer 6.0,
either 5.7 or 5.8 for Internet Explorer 7.0, 5.8 for Internet Explorer 8.0, and 9.0 for
Internet Explorer 9.0 preview and beta. The build version of the script can be used to
identify specific O/S variants. As an example, version 16385 is Windows 7, while 6000
is Windows Vista. This functionality was previously described at BlackHat USA 2009
presentation by a developer of the Metasploit Framework (Lee, 2009).

The navigator.browserLanguage, navigator.systemLanguage, and
navigator.userLanguage provide information about the language being used by the
browser and O/S. The property returns a 2 character lower case language code, followed
by a country code with a hyphen (-) for a separator. Internet Explorer 6, 7, 8 and 9 Beta
all return lower case country codes, while the Internet Explorer 9.0 Previews return an

upper case country code.

The navigator.appMinorVersion property returns a value of ‘0’, with two
exceptions for Internet Explorer 6.0 and Internet Explorer 9.0 beta. Internet Explorer 6.0
returns the service pack that is installed on the O/S, and Internet Explorer 9.0 beta returns
the value of ‘beta’. In addition to the navigator.appMinorVersion, navigator.userProfile
can also be used to identify Internet Explorer 6.0. The navigator.userProfile Internet

Explorer 6.0 is not undefined.

Unlike most other browsers which return ‘Netscape’ in the navigator.appName
property, Internet Explorer returns ‘Microsoft Internet Explorer’. All version of Internet

Explorer that was tested returned this value.

Information about the processor architecture is contained within the
navigator.cpuClass and navigator.platform properties. 32-bit (x86) and 64-bit (x86-64)

architectures will return ‘x86’ for navigator.cpuClass and ‘“Win32’ for navigator.platform.

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 18

If the system is a 64-bit system, the “‘WOW64’ token will be added to the

navigator.userAgent property.

Internet Explorer has some ability to change its navigator.userAgent by editing
the windows registry (Microsoft). The HKEY LOCAL MACHINE\
Software\Microsoft\Windows\CurrentVersion\Internet Settings\5.0\User Agent may
contain the ‘Version’ key of type REG_SZ. This key can be changed to modify the
navigator.userAgent, but it only replaces the MSIE token with the value entered. There
are a number of other tokens that can be added or modified to change individual aspects
of the user agent, but these values only change individual tokens and not the behavior of

the browser.

5.2. Mozilla Firefox

navigator.userAgent: Mozilla/5.0 (X11; U; Linux i686; en-US;
rv:1.9.2.7) Gecko/20100720 Fedora/3.6.7-1.fcl3 Firefox/3.6.7
navigator.appName: Netscape

navigator.appCodeName: Mozilla

navigator.appVersion: 5.0 (X11; en-US)
navigator.appMinorVersion: undefined
navigator.browserLanguage: undefined

navigator. undefined
systemLanguage:
language: en-US
buildiD: 20100720105013
oscpu: Linux 1686
platform: Linux 1686
product: Gecko

navigator.
navigator.
navigator.
navigator.
navigator.
navigator.

cpuClass:
undefined

navigator.
navigator.
navigator.

productSub: 20100720

userLanguage: undefined

userProfile: undefined

navigator.vendor: Fedora

navigator.vendorSub: 3.6.7-1.fcl3

custom.scripting: Javascript/1.8.1

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest w.globalStorage w.postMessage

Figure 5.2-1: Mozilla Firefox 3.6.7 on Fedora 13, x86-64 processor.

Mozilla Firefox browser contains a number of characteristics which allow it to
easily be identified, ranging from simply searching the navigator.userAgent for ‘Firefox/’
to more subtle information returned from browser specific properties. It does not provide

any support for Microsoft JScript or VBScript, but Firefox 2.0.0.x will process JavaScript

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 19

up to version 1.7, Firefox 3.0.x will process up to JavaScript version 1.8, while Firefox

3.5 and higher will support up to JavaScript version 1.8.1.

Mozilla Firefox has the navigator.language property which provides information
about the browser’s language. The format of this field is always a 2 character lower case
language code, and if a country is specified, it will be in uppercase separated by a hyphen

(-) character.

Mozilla Firefox provides some basic information about the O/S through the
navigator.oscpu, navigator.platform, navigator.vendor and navigator.vendorSub
properties. The navigator.oscpu properties provides more detailed information about the
O/S that the navigator.platform. As an example, Firefox running on Windows XP will
return ‘Windows NT 5.1° for navigator.oscpu and ‘Win32’ for navigator.platform. Some
GNU/Linux distributions have modified navigator.vendor and navigator.vendorSub to
return specific information about the browser and O/S; the default binaries from the
Mozilla Foundation’s website return an empty string (instead of being an undefined
property). As an example, the version of Firefox provided by the Fedora Project will
return ‘Fedora’ for navigator.vendor and ‘3.6.2-1.fc13” for navigator.vendorSub while the
version of Firefox provided by Ubuntu 10.04 will return ‘Ubuntu’ for navigator.vendor

and ’10.04° for navigator.vendorSub.

Mozilla Firefox browser has the potential to provide extensive information about
the version of the browser based upon the navigator.buildID and navigator.productSub.
The navigator.buildID represents when the date/time of browser is complied, with
Firefox 2.0.0.x using the YYYYMMDDHH format, and Firefox 3+ using the
YYYYMMDDHHMMSS format. It appears that Firefox is built from source
sequentially so the build times between the three major O/S families can be identified.
Also, if a GNU/Linux distribution takes the source code and complies it, the time at
which the source is compiled is unlikely to match that of the Mozilla foundation (and will
vary between the various GNU/Linux distributions) allowing for the distribution to be
identified. As the distributions compile different versions for the 32-bit and 64-bit
versions of the distribution, there can be differences which allow the architecture to be

identified. The navigator.productSub property is similar to the navigator.buildID

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 20

property in that it has date/time characteristics which are helpful in identifying the
browser. Firefox 2.0.0.x uses the YYYYMMDDHH format, while Firefox 3+ uses the
YYYYMMDD format. Although the resolution on the navigator.productSub is not very
granular, it may not allow individual O/S variants to be identified it will most likely allow

the version of Firefox to be identified.

There are two basic ways in which to customize Firefox to pretend to be a
different browser; setting the ‘general.useragent.extra.firefox’ property within
about:config or using a browser extension like User Agent Switcher.

%) about:config - Mozilla Firefox

File Edit View History Bookmarks Tools Help

- o} @ C] about:config
|| about:config |

Filter: ’ general.useragent

Preference Name Status Type Value
general.useragent.extra. firefox default string Firefox/3.6.8
general.useragent.locale default string en-US
general.useragent.security default string u

Figure 5.2-2: Built-In Firefox Spoofing

H Ia! Help

ty Web Search Ctrl+K 7y -
Downloads Ctrl+
Add-ons
we
Default User Agent i d @ Default User Agent l
Error Console Ctrl+Shift+] - < B - e e
o ntermet Explorer
Search Robots > Internet Explorer 7
Start Private Browsing Ctrl+Shift+P iPhone 3.0 Internet Explorer 8
Clear Recent History... Ctrl+Shift+Del
Edit User Agents...

Options...

User Agent Switcher 4
w) 4

Figure 5.2-3: Spoofing Browsers with User Agent Switcher

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 21

?* L P '(m iGoogle | Search settings
General
[] Hide the User Agent Switcher Tools menu
User Agents ‘
=l Internet Explorer
Internet Explorer 6 Edit User Agent
Internet Explorer 7
Internet Explorer 8 Description: Internet Explorer 8]
@ Search Robots User Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1)
iPhone 3.0
App Code Name: | Mozilla
App Name: Microsoft Internet Explorer
App Version: 4.0 (compatible; MSIE 8.0; Windows NT 6.1)
. Wil
[New -] [Edit...] [Delete...] Platform: Win32
Vendor:
I t
SpocHExpor Vendor Sub:
D Overwrite existing user agents wi
Download lists of user agen

Figure 5.2-4: Editing Specific Browser Properties with User Agent Switcher

Unfortunately neither of these methods changes the versions of JavaScript that the
browser will execute, nor will they provide the browser with the ability to process Jscript
or VBScript. The first method only allows the Firefox/Version portion of the
navigator.userAgent property to be modified; it does not change any other properties.
The second method, using the User Agent Switcher extension, allows a number of
properties to be modified but it does not include the functionality to change the
navigator.buildID or navigator.productSub which can still be used to potentially identify

the browser version, O/S, and processor architecture.

5.3. Apple Safari

navigator.userAgent: Mozilla/5.0 (iPhone; U; CPU iPhone 0S 4 0 1 like
Mac OS X; en-us) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5
Mobile/8A306 Safari/6531.22.7

navigator.appName: Netscape

navigator.appCodeName: Mozilla

navigator.appVersion: 5.0 (iPhone; U; CPU iPhone 0S 4 0 1 like Mac OS
X; en-us) AppleWebKit/532.9 (KHTML, like Gecko) Version/4.0.5
Mobile/8A306 Safari/6531.22.7

navigator.appMinorVersion: undefined

navigator.browserLanguage: undefined

navigator.cpuClass: undefined

navigator.systemLanguage: undefined

navigator.language: en-us

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: iPhone

navigator.product: Gecko

navigator.productSub: 20030107

© 2010 The SANS Institute

Mark Fioravanti, mark.fioravanti.ii@gmail.com

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 22

navigator.userLanguage: undefined

navigator.userProfile: undefined

navigator.vendor: Apple Computer, Inc.

navigator.vendorSub: dne

custom.scripting: Javascript/1.7 JScript/0.0

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage w.postMessage

Figure 5.3-1: Apple Safari 4.0.5 on iPhone 3G with iOS 4.0.1

The Apple Safari browser provides a number of properties which allow it to be
identified, but this identification can be limited depending upon how the properties are
modified. As Safari and Google Chrome are based upon WebKit for rendering the pages,
the differences between the Safari and Google Chrome is reduced as compared to the
differences between Safari and other browsers such as Microsoft Internet Explorer or
Mozilla Firefox. Safari will execute scripts with a version up to and including JavaScript
version 1.7. Also Safari will execute Microsoft JScript as though it was JavaScript until

it encounters a Microsoft specific function.

Specific information about the O/S is included in navigator.appVersion and
navigator.userAgent. These two JavaScript properties will contain the ‘Safari/’,
‘AppleWebKit/” and ‘Version/’ tokens each of which is followed by a version identifier.
If Safari is running on an Apple device such as an iPad, iPhone, or an iPod Touch it will

also contain a ‘Mobile/’ token which contains a device identifier.

Safari has the navigator.language property which provides information about the
browser’s language. The format of this field is always a 2 character lower case language
code, and if a country is specified with will be in separated by a hyphen (-) character. If
the country code is uppercase, then the browser is running on Microsoft Windows,
otherwise if the country code’s characters are all lower case it is running on an Apple

platform (Mac OS X, iPhone, iPad, etc).

The navigator.platform provides additional information about the device. It will
return values of iPad (e.g. an iPad), iPhone (e.g. an iPhone, any variant), iPod (e.g. iPod
Touch), Maclntel (e.g. Apple Mac OS X with an Intel processor) or Win32 (e.g.
Microsoft Windows O/S).

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 23

The navigator.productSub and navigator.vendor JavaScript properties are
populated with WebKit specific values. The navigator.productSub contains the date
£20030107’, while navigator.vendor contains ‘Apple Computer, Inc.’

S

Open Page With > Develop »
User Agent » | v Default (Automatically Chosen) »

Safari 5.0.1 —Mac
Safari 5.0.1 — Windows
Safari 4.1.1 —Mac
Safari 4.0.5 —Mac
Safari 4.0.5 — Windows -

Ctrl+Alt+1
Ctrl+Alt+C

Show Web Inspector
Show Error Console
Show Snippet Editor
Show Extension Builder

:h

Start Debugging JavaScript
Start Profiling JavaScript Ctrl+Alt+P Mobile Safari 3.2 —iPad
nen Mobile Safari 3.1.3 —iPhone

Disable Caches Mobile Safari 3.1.3 —iPod touch
Disable Images

Disable Styles

Disable JavaScript

Disable Runaway JavaScript Timer
Disable Site-specific Hacks

Internet Explorer 8.0
Internet Explorer 7.0
Internet Explorer 6.0

Busi

Firefox 3.6.3 —Mac
Firefox 3.6.3 — Windows
Firefox 3.5.9 —Mac
Firefox 3.5.9 — Windows

Opera 10.53 —Mac
Opera 10.53 — Windows

Other..

Figure 5.3-2: Built-In Apple Safari Browser Spoofing

Safari contains developer tools which allow the browser to alter its
navigator.userAgent and navigator.appVersion properties to be that of another
browser/O/S combination (Apple, 2010). These changes do not affect the other object
properties like version of JavaScript processed, available DOM objects or the navigator
objects like navigator.platform or navigator.vendorSub. The modifications to
masquerade as a version of Microsoft Internet Explorer are also limited in that there are
no .Net framework identifiers supplied and most versions of Microsoft Windows include

at least one version of the .Net framework.

5.4. Google Chrome

(Windows; U; Windows NT 6.1; en-US)
Chrome/6.0.472.0 Safari/534.3

navigator.userAgent: Mozilla/5.0
AppleWebKit/534.3 (KHTML, like Gecko)
navigator.appName: Netscape
navigator.appCodeName: Mozilla
navigator.appVersion: 5.0 (Windows;
AppleWebKit/534.3 (KHTML, like Gecko)
navigator.appMinorVersion: undefined
navigator.browserLanguage: undefined
navigator.cpuClass: undefined
navigator.systemLanguage: undefined
navigator.language: en-US
navigator.buildID: undefined
navigator.oscpu: undefined

U; Windows NT 6.1; en-US)
Chrome/6.0.472.0 Safari/534.3

navigator.
navigator.

platform: Win32
product: Gecko

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 24

navigator.productSub: 20030107

navigator.userLanguage: undefined

navigator.userProfile: undefined

navigator.vendor: Google Inc.

navigator.vendorSub: dne

custom.scripting: Javascript/1.7 JScript/0.0

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage w.postMessage

Figure 5.4-1: Google Chrome 6.0.472.0 on Windows 7 Ultimate, x86 Processor

Google Chrome is similar to Apple Safari in the types and values of the browser
properties that are available. Both browsers make use of the WebKit libraries which
contributes to these similarities but there are some differences. Google Chrome will
execute scripts with a version up to and including JavaScript version 1.7. Also Google
Chrome will execute Microsoft JScript as though it was JavaScript until it encounters a

Microsoft specific function.

Specific information about the O/S is included in the values of the
navigator.appVersion and navigator.userAgent properties. These two JavaScript
properties will contain the ‘Safari/> and ‘AppleWebKit/’ tokens each of which is followed
by a version identifier, similar to Safari but unlike Safari the ‘Version/’ is absent and a
‘Chrome/’ token is included. Some Linux distributions will include other tokens, like
Sabayon which includes a ‘Sabayon’ token or Ubuntu which includes ‘Ubuntu/[Version]’

token in these two properties.

Google Chrome utilizes the navigator.language property to provide information
about the browser’s language. The format of this field is always a 2 character lower case
language code, and if a country is specified, it will be separated by a hyphen (-) character

with an uppercase country code.

The navigator.platform provides additional information about the O/S. It will
return values of Linux 1686 (e.g. GNU/Linux O/S), Win32 (e.g. Microsoft Windows O/S)
or Maclntel (e.g. Apple OS X O/S). Unlike other browsers, if the processor architecture
is x86-64, the navigator property will still return the 32-bit identifiers (e.g. Linux 1686
and Win32).

The navigator.productSub and navigator.vendor JavaScript properties are

populated with values similar to that of Apple Safari. The navigator.productSub contains

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 25

the date 20030107’ like Safari, but navigator.vendor property’s value instead returns

‘Google, Inc.’

Google Chrome also includes some Chrome specific objects; like window.google,
window.chrome, and window.chromium. The window.chrome object only exists for

versions of Google Chrome 3+.

Google Chrome provides some built in functionality for attempting to masquerade
as a different browser (Google, 2008). If Google Chrome is started from the command
line, with the --user-agent="Desired User Agent” the browser will use that User Agent
string for the duration of the session. Once the browser is restarted, the User Agent will
revert to the real value. These changes do not affect the other object properties like
version of JavaScript processed, available DOM objects, the navigator objects like
navigator.platform or navigator.vendorSub, or the Google Chrome specific browser

objects (window.google, window.chrome, and/or window.chromium).

5.5. ASA Software Opera

navigator.userAgent: Opera/9.80 (Macintosh; Intel Mac OS X; U; en)
Presto/2.6.30 Version/10.61

navigator.appName: Opera

navigator.appCodeName: Mozilla

navigator.appVersion: 9.80 (Macintosh; Intel Mac OS X; U; en)
navigator.appMinorVersion: dne

navigator.browserLanguage: en

navigator.cpuClass: undefined

navigator.systemLanguage: undefined

navigator.language: en

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: MacIntel

navigator.product: undefined

navigator.productSub: undefined

navigator.userLanguage: en

navigator.userProfile: undefined

navigator.vendor: undefined

navigator.vendorSub: undefined

custom.scripting: Javascript/2 JScript/0.0

custom.property: Opera/l10.61 Opera/8429 !d.all d.childNodes
d.compatMode !d.documentMode d.getElementById d.getElementsByClassName
'n.savePreferences w.XMLHttpRequest !w.globalStorage w.postMessage

© 2010 The SANS Institute

Figure 5.5-1: ASA Opera 10.61 on Apple Mac OS X 10.6.4

ASA Software’s Opera Browser also provides a number of functions and includes

a number of different behaviors to allow it to be uniquely identified. The Opera Browser

Mark Fioravanti, mark.fioravanti.ii@gmail.com

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 26

will process JavaScript and like Safari and Google Chrome it will attempt to process
Microsoft JScript with its JavaScript processor until a Microsoft Internet Explorer unique
function is encountered. Opera also is compliant with RFC4329 which obsoletes the
JavaScript version identifier associated with the script tag, so it will process all JavaScript

found on the page regardless of the JavaScript version associated with the script.

The Opera Browser also returns fairly unique value for the navigator.appName
property, ‘Opera’. The navigator.browserLanguage, navigator.language, and
navigator.userLanguage provide information about the language is being used by the
browser and O/S. The property returns a 2 character lower case language code with no

associated country codes.

Besides navigator.appVersion and navigator.userAgent, Opera only provides
information in the navigator.platform property to return information about the O/S.
Typically values returned by the navigator.platform property include: FreeBSD, Linux,
Maclntel, and Win32. Specific information about the O/S and/or processor architecture
is only available from within the navigator.appVersion and navigator.userAgent
properties. As an example, both 32-bit and 64-bit Linux O/Ss will have “X11; Linux
1686;” or “X11; Linux x86_64;” tokens in the navigator.appVersion and
navigator.userAgent properties but navigator.platform will only contain “Linux”. This
feature also helps to distinguish it from other browsers, in that other browsers will
commonly return something similar to “Linux 1686 or “Linux amd” (e.g. Linux with a

Processor Architecture identifier).

Opera also provides the window.opera object which scripts can access additional
information and make use of specific functionality within the browser. This functionality
was previously described at BlackHat USA 2009 presentation by a developer of the
Metasploit Framework (Lee, 2009). Specifically the window.opera.buildNumber() and
window.opera.version() functions return specific information about the browser. The
window.opera.version() function returns the version of opera that is being used (i.e.
“10.10” or “10.61”), while the window.opera.buildNumber() function returns the build
number of the browser (i.e. “6386”, “8402”, or “3445” for Opera 10.61). These values
can be used to identify specific O/Ss. For example, Opera 10.61 with a Microsoft

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 27

Windows O/S will have a build number of 3445, Opera 10.61 with Apple Mac OS X will
have a build number of 6386, while Opera 10.61 with a Linux O/S will have build
number of 6386. The differences in the build numbers are no longer being supported by
ASA Software, and all O/S variants will now utilize the same build number for a given

version of Opera (2010, Aleksandersen).

> | =) | M [E opera:config#Useragent MR B

» Special

» System
» TransferWindow

v User Agent

Allow Components In UA String O Default »
Comment
Spoof UserAgent ID 1[4 Default | »

w llear Nienlav Mada

Figure 5.5-2: Built-In Opera Browser Spoofing

Opera provides built-in functionality to allow it to masquerade as other browsers.
By default a user can change to browser to appear to be Microsoft Internet Explorer or
Mozilla Firefox. This functionality can be accessed by entering about:config in the URL.
When the masquerading feature is enabled the navigator.appName, navigator.appVersion
and navigator.userAgent properties are updated to match that of the desired browser.
Depending upon how the masquerading function is configured, Opera may or may not
include an Opera version number at the end of the navigator.appVersion and
navigator.userAgent properties. Beyond updating the values of those fields, no other
changes to the browsers functionality are changed. It still allows the properties of the
window.opera object to be accessed and it still processes all version of JavaScript and

attempts to process Microsoft JScript.

5.6. Konqueror

navigator.userAgent: Mozilla/5.0 (compatible; Konqueror/4.4; Linux)
KHTML/4.4.1 (like Gecko)

navigator.appName: Netscape

navigator.appCodeName: Mozilla

navigator.appVersion: 5.0 (compatible; Konqueror/4.4; Linux)
KHTML/4.4.1 (like Gecko)

navigator.appMinorVersion: undefined

navigator.browserLanguage: en US

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 28

navigator.cpuClass: x86 64

navigator.systemLanguage: undefined

navigator.language: en US

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: Linux x86 64

navigator.product: Gecko

navigator.productSub: 20030107

navigator.userLanguage: en US

navigator.userProfile: undefined

navigator.vendor: KDE

navigator.vendorSub: dne

custom.scripting: Javascript/1.5 JScript/0.0
custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage !w.postMessage

Figure 5.6-1: Konqueror 4.4.1 on Ubuntu 10.04, x86-64 processor

The K Desktop Environment (KDE) Konqueror browser is available for Linux
and UNIX O/Ss as part of the KDE desktop. Konqueror will execute scripts with a
version up to and including JavaScript version 1.5. Also Konqueror will execute
Microsoft JScript as though it was JavaScript until it encounters a Microsoft specific
function. Konqueror does not display a large amount of variance between the sub
versions of 3.x.x or 4.x.x, but there are a number of differences between version 3.x and

4.x of the browser.

The navigator.appName property contains the values of either ‘Konqueror’ or

‘Netscape’. ‘Konqueror’ is returned for 3.x, while ‘Netscape’ is returned for 4.x.

The navigator.browserLanguage, navigator.language, and navigator.userLanguage
provide information about the language is being used by the browser and O/S. The
format of this field is always a 2 character lower case language code, and an uppercase
country code. Unlike other browsers, the language code and country code are separated

with an underscore (_) character.

The navigator.cpuClass and navigator.platform provide some information about
the O/S. Konqueror on PC-BSD will return ‘1386’ or ‘amd64’ depending on the
processor architecture, while Konqueror on GNU/Linux will return either ‘1686’ or
‘x86_64" depending on the processor architecture. The returned values of the
navigator.platform property are similar, but they allow the general version of Konqueror

to be determined on GNU/Linux. Konqueror on PC-BSD will return ‘FreeBSD i386° or

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 29

‘FreeBSD amd64’ depending upon the processor architecture. Konqueror on GNU/Linux
will return one of four different values (e.g. ‘Linux 1686°, ‘Linux 1686 X11°, ‘Linux
x86 64, ‘Linux x86_64 X11°) depending upon the processor architecture and Konqueror

version. Konqueror 3.x will include ‘X11” after the processor architecture.

The navigator.product and navigator.productSub contain information will allow
Konqueror 3.x browsers to be distinguished from Konqueror 4.x browsers. In general
Konqueror 4.x provides values more similar to those of other browsers. Konqueror 3.x
will contain values of ‘Konqueror/khtml’ for navigator.product and ‘20040107’ for
navigator.productSub, while Konqueror 4.x will contain values of ‘Gecko’ for

navigator.product and ‘20030107” for navigator.productSub.

The navigator.vendor property contains returns the value of ‘KDE’ while will
allow it to easily distinguish it from other browsers. The possible states of the
navigator.vendorSub property provide another way in which Konqueror 3.x can be
distinguished from Konqueror 4.x. In Konqueror 3.x, navigator.vendorSub is an
undefined function, while in Konqueror 4.x the property is defined but returns and empty

string.

5.7. Android

navigator.userAgent: Mozilla/5.0 (Linux; U; Android 2.2; en-us; Sprint
APA9292KT Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1

navigator.appName: Netscape

navigator.appCodeName: Mozilla

navigator.appVersion: 5.0 (Linux; U; Android 2.2; en-us; Sprint
APA9292KT Build/FRF91) AppleWebKit/533.1 (KHTML, like Gecko)
Version/4.0 Mobile Safari/533.1

navigator.appMinorVersion: undefined
navigator.browserLanguage: undefined

navigator.cpuClass: undefined

navigator.systemLanguage: undefined

navigator.language: en

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: Linux armv71l

navigator.product: Gecko

navigator.productSub: 20030107

navigator.userLanguage: undefined

navigator.userProfile: undefined

navigator.vendor: Google Inc.

navigator.vendorSub: dne

custom.scripting: Javascript/1.7 JScript/0.0

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 30

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage w.postMessage

Figure 5.7-1: Android 2.2 HTC Evo (Sprint)

The embedded Android O/S includes a browser to allow users to navigate the
Internet, and this browser is very similar to the Google Chrome browser which it is based
upon. Android browser will execute scripts with a version up to and including JavaScript
version 1.7. Also the Android browser will execute Microsoft JScript as though it was

JavaScript until it encounters a Microsoft specific function.

The navigator.appVersion and navigator.userAgent provide some information
about the device. These two properties include tokens to specify that it is an Android
device along with the version (e.g. ‘Android 2.1-updatel’), a token to specify that it is a

mobile device (e.g. ‘Mobile’) and a browser version token (e.g. “Version/’).

The navigator.language property provides information about the language that the
device is configured to support. The value of the property is the two character lower case
language code, but unlike Google Chrome the value does not include a country identifier.
The navigator.language property does not match the language token listed in the
navigator.app Version and navigator.userAgent property. On Android embedded devices,
the language token in the navigator.appVersion and navigator.userAgent properties
contain the language code and the country code, while navigator.language only contains

the language code.

The navigator.platform property contains the value of ‘Linux armv71” which is
the processor of the device. The desktop version of Google Chrome will return ‘Linux

1686’ for a processor type.

The navigator.vendor property returns a value of ‘Google Inc.” for the desktop
versions of Google Chrome, but the browser of the embedded Android devices displays
some variance in the values that are returned. Android devices will return values of

either ‘Google Inc.” or ‘Apple Computer, Inc.” for navigator.vendor.

Unlike the desktop version of Google Chrome, Android devices do not include
native functionality to modify their User Agent, so it is more difficult for these devices to

masquerade as other browsers and/or O/Ss.

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 31

5.8. Blackberry

navigator.userAgent: BlackBerry9630/5.0.0.732 Profile/MIDP-2.1
Configuration/CLDC-1.1 VendorID/105

navigator.appName: Netscape

navigator.appCodeName: Mozilla

navigator.appVersion: 5.0.0.732 Profile/MIDP-2.1 Configuration/CLDC-1.1
VendorID/105

navigator.appMinorVersion: undefined
navigator.browserLanguage: undefined

navigator.cpuClass: undefined

navigator.systemLanguage: undefined

navigator.language: en

navigator.buildID: Today's

navigator.oscpu: undefined

navigator.platform: BlackBerry

navigator.product: Gecko

navigator.productSub: undefined

navigator.userLanguage: undefined

navigator.userProfile: undefined

navigator.vendor: undefined

navigator.vendorSub: undefined

custom.scripting: Javascript/1.3

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById !d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest !w.globalStorage !w.postMessage

Figure 5.8-1: BlackBerry Browser on BlackBerry 9630 (Verizon)

The BlackBerry browser can easily be identified by the navigator.userAgent but
beyond the navigator.userAgent there are a number of other properties, which can be
used to uniquely identify the browser. Blackberry browser will execute scripts with a
version up to and including JavaScript version 1.3, and unlike some of the other browsers
that were fingerprinted only JavaScript is executed and neither Microsoft VBScript or

Microsoft JScript were executed.

A number of navigator properties which other browsers populated, only a few
items were defined within the Blackberry scripting environment. The navigator.language
property contains the device’s language listed as a 2 character lowercase language code.
The navigator.language property does not return a country code within the language field,
only a language code. Unlike most of the other browsers, the navigator.buildID is
defined, but it returns the unique value of “Today’s”, and the navigator.platform value is

also unique in that it returns the value of “BlackBerry”.

Similar to the other mobile device browsers that were fingerprinted, the

Blackberry browser does not contain functionality to allow it to masquerade as another

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 32

browser. As a significant number of navigator properties are undefined, it will be
difficult for other browsers to masquerade as a Blackberry device due to the presence of

their defined defaults.

5.9. ASA Software OperaMini

navigator.userAgent: Opera/9.80 (iPhone; Opera Mini/5.0.019802/19.892;
U; en) Presto/2.5.2525

navigator.appName: Opera

navigator.appCodeName: Mozilla

navigator.appVersion: 9.80 (iPhone; Opera Mini/5.0.019802/19.892; U;
en)

navigator.appMinorVersion: dne

navigator.browserLanguage: en

navigator.cpuClass: undefined

navigator.systemLanguage: undefined

navigator.language: en

navigator.buildID: undefined

navigator.oscpu: undefined

navigator.platform: Pike v7.6 release 92

navigator.product: undefined

navigator.productSub: undefined

navigator.userLanguage: en

navigator.userProfile: undefined

navigator.vendor: undefined

navigator.vendorSub: undefined

custom.scripting: Javascript/2 JScript/0.0

custom.property: Opera/10.00 Opera/892 !d.all d.childNodes d.compatMode
!d.documentMode d.getElementById d.getElementsByClassName
'n.savePreferences w.XMLHttpRequest !w.globalStorage w.postMessage

Figure 5.9-1: ASA Software OperaMini on iPhone 3G with i0S4.0.2

The ASA Software OperaMini Browser is similar to the Opera Browser except
that it is designed for mobile platforms. OperaMini is very similar to the Opera browser,
but there are a small number of notable exceptions. The version that is listed in the
navigator.appVersion and navigator.userAgent is different from the value that is returned
by the window.opera.version() function. The OperaMini’s navigator.platform is different
from the desktop version of the Opera browser, as it returns a value of ‘Pike v7.6 release
92’. The OperaMini browser does not provide support to masquerade as a different

browser.

5.10. ASA Software Opera Mobile

navigator.userAgent: Opera/9.80 (Linux armv71l; Maemo; Opera Mobi/4; U;
en-GB) Presto/2.5.28 Version/10.1

navigator.appName: Opera

navigator.appCodeName: Mozilla

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 33

navigator
GB)

navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.
navigator.

.appVersion: 9.80 (Linux armv7l; Maemo; Opera Mobi/4; U; en-
appMinorVersion: dne
browserLanguage: en-GB
cpuClass: undefined
systemLanguage: undefined
language: en-GB

buildID: undefined

oscpu: undefined
platform: Linux

product: undefined
productSub: undefined
userLanguage: en-GB

userProfile: undefined

navigator.
navigator.vendor: undefined

navigator.vendorSub: undefined

custom.scripting: Javascript/2 JScript/0.0

custom.property: Opera/10.1 Opera/4 !d.all d.childNodes d.compatMode
!d.documentMode d.getElementById d.getElementsByClassName
'n.savePreferences w.XMLHttpRequest !w.globalStorage w.postMessage

Figure 5.10-1: ASA Software Opera Mobi 4 Nokia N900 with Maemo 5

The ASA Software Opera Mobile Browser is similar to the desktop version of the
Opera Browser except that it is designed for mobile platforms. Like the OperaMini, the
Opera Mobile browser is very similar to the desktop Opera browser. Again the
window.opera.buildNumber() function provides a different build number from those that
are seen with the desktop and the mini versions of the browser. Information contained
within the navigator.appVersion and navigator.userAgent properties has tokens which
allow the identification of the Mobile version of the browser (e.g. ‘Maemo’ and ‘Opera
Mobi 4’ tokens). Unlike the other versions of the Opera browser, the
navigator.browserLanguage, navigator.language and navigator.userLanguage contain the
language code and the country code of the device. The language code is in lower case,

while the country code is in upper case. The two fields are separated by a hyphen (-).

5.11. Maemo Browser (MicroB)

navigator.userAgent: Mozilla/5.0
rv:1.9.2bb6pre)

(X11; U; Linux armv7l; en-GB;
Gecko/20100318 Firefox/3.5 Maemo Browser 1.7.4.8 RX-51

NS00

navigator.appName: Netscape
navigator.appCodeName: Mozilla
navigator.appVersion: 5.0 (X11; en-GB)
navigator.appMinorVersion: undefined
navigator.browserLanguage: undefined
navigator.cpuClass: undefined
navigator.systemLanguage: undefined
navigator.language: en-GB

© 2010 The SANS Institute

Mark Fioravanti, mark.fioravanti.ii@gmail.com

Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 34

navigator.buildID: 20091023080530

navigator.oscpu: Linux armv71l

navigator.platform: Linux armv71l

navigator.product: Gecko

navigator.productSub: 20100318

navigator.userLanguage: undefined

navigator.userProfile: undefined

navigator.vendor: Firefox/3.5 Maemo Browser 1.7.4.8 RX-51 N900O
navigator.vendorSub: dne

custom.scripting: Javascript/1.8.1

custom.property: !d.all d.childNodes d.compatMode !d.documentMode
d.getElementById d.getElementsByClassName !n.savePreferences
w.XMLHttpRequest w.globalStorage w.postMessage

Figure 5.11-1: Maemo Browser on Nokia N900 with Maemo 5

The Maemo Browser (MicroB) is similar to the desktop version of the Mozilla
Firefox Browser except that it is designed for mobile platforms. Although the Maemo
Browser is very similar to the Firefox browser, there are a small number of notable
exceptions. The version that is listed in the navigator.vendor and navigator.userAgent are
different from the values that are used on the desktop version. The navigator.vendor
contains information about the device such as the model (e.g. ‘RX-51 N900’) and
browser version (e.g. Maemo Browser 1.7.4.8). The navigator.oscpu and
navigator.platform properties return values which are characteristics of an ARM
processor (e.g. these properties return the value of ‘Linux armv71’). Similar to the
navigator.buildID of the desktop version of Mozilla Firefox, the value returned by
navigator.buildID contains enough resolution to uniquely identify the browser as

compared to other Mozilla Firefox browsers.

6. Application

The ability to accurately fingerprint a browser and/or determine the underlying
O/S of a system can be integrated into the tools of a Web Application Penetration Tester.
Two Free and Open Source Software (FOSS) projects that can benefit from the ability to
accurately identify browsers are the Browser Exploitation Framework (BeEF) (Alcorn,
2010) and the Metasploit Framework. BeEF currently relies upon the
navigator.userAgent property to determine the O/S of the Browser Zombie. The
Metasploit Framework’s Browser Autopwn component has been expanded to include a

number of the items previously referenced for Microsoft Internet Explorer and ASA

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment | 35

Software’s Opera browser (Lee, 2009). Browser Autopwn can be and has been expanded
as a result of this fingerprinting project to make use of the Google Chrome and Mozilla

Firefox identification techniques previously described.

7. Conclusion
As a result of the collection and analysis of a number of different browser and
O/Ss, it was determined that a browser and/or operating system could fairly easily be

identified by using the scripting techniques identified in this paper.

Determining the version of the browser can be difficult, as usually it is possible to
overwrite the information providing specific details about the browser. In the case of
Microsoft Internet Explorer, Mozilla Firefox, and ASA Software’s Opera browser
sufficient information is available to usually determine the specific browser version being
used, even if a level of masquerading is being performed. A combination of the major,
minor and build versions of the script engine allow the version of Internet Explorer to be
identified, Mozilla Firefox version’s can be determined by the navigator.buildID, while
ASA Software’s Opera browser can be identified by either the opera.buildNumber() or

opera.version() functions.

Determining the O/S that the browser is operating within can be a little more
difficult, but it is usually possible to at least determine the O/S family that is hosting the
browser. Some browsers only operate within specific environments, such as Microsoft
Internet Explorer, Apple’s Safari Browser or KDE’s Konqueror. All of the browsers
provided enough information to determine the O/S, while other provided enough
information to determine the O/S family. ASA Software’s Opera browser provides the
opera.buildNumber() function by which the O/S family can be determined. Some
exposed more information which allowed specific O/S variants and distributions to be
identified or even specific processor architectures. At a minimum Mozilla Firefox allows
the O/S family to be identified, while in most cases the navigator.buildID allows the O/S,

O/S distribution and even the processor architecture to be determined.

During a Web Application Penetration test which includes client side testing, it is

important to correctly identify the browser and O/S of the client before attempting to

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 36

exploit it. Incorrect identification can result in a failed exploit that can crash a browser or
even the operating system, potentially resulting in the lost data. By correctly identifying
a client, exploits can be more carefully selected to reduce the likelihood of collateral
damage and increase the likelihood of a successfully compromising a client and possibly
successfully manipulating the client to perform the desired actions of the web application

penetration tester.

8. References

Alcorn, W. (2010, February 25). BindShell. Net: browser exploitation framework.
Retrieved from http://www.bindshell.net/tools/beef/

Aleksandersen, D. (2010, August 25). Bug fixing wednesday on a unified build number.
Retrieved from http://my.opera.com/desktopteam/blog/b9034

Apple Computer, Inc. (2010, June 21). Safari user guide for developers: prototyping your
website. Retrieved from
http://developer.apple.com/safari/library/documentation/appleapplications/concep
tual/safari_developer guide/PrototypingYourWebsite/PrototypingY ourWebsite.ht
ml

European Computer Manufacturers Association. (1999, December) Standard ECMA-262:
ECMAScript language specification, 3" Edition. Retrieved from
http://www.ecma-international.org/publications/files’ ECMA-ST-ARCH/ECMA -
262,%203rd%20edition,%20December%201999.pdf

European Computer Manufacturers Association. (2009, December) Standard ECMA-262:
ECMAScript language specification, 5" Edition. Retrieved from
http://www.ecma-international.org/publications/files’ ECMA-ST/Ecma-262.pdf

GlobalStats. (2010, August). StatsCounter: top 5 browsers from august 2009 through
august 2010. Retrieved from http://gs.statcounter.com/

Google. (2008, December 30). Google Chrome: help forum: built-in user agent
switcher? Retrieved from
http://www.google.com/support/forum/p/Chrome/thread?tid=64e4e45037f55919
&hl=en

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 37

Google. Google DocType: documenting the open web. Retrieved from
http://code.google.com/doctype/

Hoehrmann, B. (2006, April). Scripting media types. Retrieved from http://www.rfc-
editor.org/rfc/rfc4329.txt

JavaScript Kit. The language & type attributes of JavaScript: variations of language
attribute. Retrieved from
http://www.javascriptkit.com/javatutors/languageattri3.shtml

Lee, J. (2009, August) Using Guided Missiles in Drive-by's: Automatic browser
fingerprinting and exploitation with Metasploit. Retrieved from
http://www.blackhat.com/presentations/bh-usa-09/EGYPT/BHUSA09-Egypt-
GuidedMissiles-SLIDES.pdf

Microsoft. JScript (windows script technologies). Retrieved from
http://msdn.microsoft.com/en-us/library/hbxc2t98(VS.85).aspx

Microsoft. (2009, March). Version information (windows scripting - jscript). Retrieved
from http://msdn.microsoft.com/en-us/library/s4esdbwz(v=VS.85).aspx

Microsoft. (2008, August). Microsoft JScript features - ECMA (windows scripting -
JScript). Retrieved from http://msdn.microsoft.com/en-
us/library/d33e43t3(v=VS.85).aspx

Microsoft. Microsoft JScript features - Non-ECMA (windows scripting - JScript).
Retrieved from http://msdn.microsoft.com/en-us/library/4tc5a343(v=VS.85).aspx

Microsoft. VBScript. Retrieved from http://msdn.microsoft.com/en-
us/library/t0aew7h6.aspx

Microsoft. (2009, March). VBScript version information. Retrieved from
http://msdn.microsoft.com/en-us/library/4ySy7bh5.aspx

Microsoft. Understanding user-agent strings. Retrieved from
http://msdn.microsoft.com/en-us/library/ms537503%28VS.85%29.aspx

NetMarketShare. (2010, August). Market share for browsers, operating systems, and
search engines. Retrieved from
http://marketshare.hitslink.com/report.aspx?qprid=0

Netscape Communications Corporation, Sun Microsystems, Inc. (1995, December 4).

Netscape and Sun announce JavaScript, the open, cross-platform object scripting

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

Client Fingerprinting via Analysis of Browser Scripting Environment = 38

language for enterprise networks and the Internet. Retrieved from
http://web.archive.org/web/20070916144913/http://wp.netscape.com/newsret/pr/n
ewsrelease67.html

World Wide Web Consortium. (2005, Janruary 19). Document object model. Retrieved
from http://www.w3.org/DOM/

W3schools. HTML <script> type attribute. Retrieved from
http://www.w3schools.com/TAGS/att_script_type.asp

W3schools. The history object. Retrieved from
http://www.w3schools.com/jsref/obj_history.asp

W3schools. The location object. Retrieved from
http://www.w3schools.com/jsref/obj_location.asp

W3schools. The navigator object. Retrieved from
http://www.w3schools.com/jsref/obj navigator.asp

W3schools. The screen object. Retrieved from
http://www.w3schools.com/jsref/obj_screen.asp

W3schools. (2010, July). Browser statistics. Retrieved from
http://www.w3schools.com/browsers/browsers_stats.asp

Zalewski, M. (2009, December). Browser security handbook. Retrieved from
http://code.google.com/p/browsersec/

Mark Fioravanti, mark.fioravanti.ii@gmail.com

© 2010 The SANS Institute Author retains full rights.

