
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

Burp Suite(up) with fancy scanning mechanisms

GIAC (GWAPT) Gold Certification

Author: Zoltan Panczel, panczelz@gmail.com
Advisor: Christopher Walker

Accepted: December 20th, 2015

Abstract

Burp Suite Professional is one of the best web application vulnerability scanners in the
market. The application has lots of useful built-in functions to find security problems.
The main problem is the slowly updated scanning engine. Security experts find new
attack methods almost every day, but up-to-date integration of these into the scanner is
quite impossible. Hopefully, Burp Suite has the Extender function for developing new
scanning techniques. Based on an eBay hacking bug bounty result, Drupal 7 SQL
injection vulnerability, Perl DBI problems and UTF8 Cross-Site Scripting a new scanner
extension was born. The ActiveScan++ extension is good starting point to develop a new
scanning approach. The new implementation is good for every aspect of web application
vulnerability assessments, for example, bug bounties.

Burp Suite(up) with fancy scanning mechanisms 2

Author Name, email@address

1. Introduction

Burp Suite Professional is a powerful HTTP interception proxy with lots of

additional functions like Spider, Sequencer or Scanner (Portswiggernet, 2015). This tool

is one of the most recommended security scanners (Henry Dalziel, 2015). The

capabilities of this software almost make this the perfect web vulnerability scanner.

In conclusion, the main problem is the slowly updated scanning engine according

to new attack mechanisms and user requests (Portswiggernet, 2015). Security experts find

new attack methods almost every day, but up-to-date integration of these into the scanner

is quite impossible.

Burp Suite has the Extender function for developing new scanning techniques.

PortSwigger Ltd. provides useful and complex documentation with samples for extension

development (Portswiggernet, 2015). Burp Suite is written in Java but supports writing

extensions in Java, Python or Ruby. There is a discontinued forum (Portswiggernet,

2015) and the new Support Center to discuss or read about the development

(Portswiggernet, 2015).

The test cases of the new plugin are based on bug bounty results, impressive web

attacks and bypass techniques.

Burp Suite(up) with fancy scanning mechanisms 3

Author Name, email@address

2. Scanning engine development
Burp Suite has an extension store called BApp Store and this is available from the

Extender tool. The ActiveScan++ scanning extension (1.0.12 – 20151118) is written in

Python language and supports the following vulnerability assessments:

x Shellshock;

x Blind code injection (Ruby’s open());

x Host header attacks.

Instead of developing the attack methods from scratch the ActiveScan++

extension is good starting point. The source code is available on GitHub under Apache

license (Kettle, 2014). The Burp Suite Professional version 1.6.30 was used during the

testing.

2.1. PHP preg_replace() array to string attack
This attack method was described in a public blog post about an eBay PHP

remote code injection vulnerability (David Vieira-Kurz, 2013). Burp Suite Professional

does not support this kind of array to string conversion problem detection, only simple

code injection. One of the discussions on reddit.com included a vulnerable PHP code

sample which is good for testing the extension.

Burp Suite(up) with fancy scanning mechanisms 4

Author Name, email@address

Figure 1. - Vulnerable preg_replace() usage

First of all one must define a new scanner check by the registerScannerCheck()

method:

Figure 2. - Define callbacks

The PhpPregArray class is based on CodeExec class of the original extension.

PhpPregArray has two methods: __init__ and doActiveScan. The __init__ defines the

callbacks and the testing payload:

Figure 3. - PhpPregArray initialization

Burp Suite(up) with fancy scanning mechanisms 5

Author Name, email@address

The doActiveScan() method supports only GET and POST HTTP requests, other

injectable HTTP processing are out of scope. The following part of the code is set the

HTTP method for the scanning according to the original HTTP request:

Figure 4. - Set up the HTTP method

The doActiveScan method of the PhpPregArray transforms the GET or POST

parameters into two arrays, therefore the method needs a parameter list:

Figure 5. - Collect the HTTP parameters

To avoid the unnecessarily scanning requests the extension makes checks only

when the name of the parameter is equal the name of the actual insertion point.

Unfortunately, this only works in Scanner but not from Intruder because Intruder uses

digits for the names of the insertion points:

Figure 6. - Constructing the array parameters

Simple string concatenation is enough to construct the new array parameters p0

and p1. The doActiveScan() method removes the original parameter and makes a new

HTTP request:

Figure 7. - Original parameter removing

The next two lines build the new values of the parameters, the first can be

anything, but the second is the payload or vice versa:

Burp Suite(up) with fancy scanning mechanisms 6

Author Name, email@address

Figure 8. - Build the new array parameters and values

Adding the newly created parameters is the last task before sending the scanning

HTTP request:

Figure 9. - Create new HTTP request

Before the verification of the vulnerability, the extension sends the HTTP request

and save the response for further analysis:

Figure 10. - Sending and receiving the new HTTP packets

The payload contains the phpinfo() function accordingly the extension searches

the “_REQUEST” string which is a part of the phpinfo() output:

Figure 11. - Analyzing the response and handling the new issue

If the vulnerability has not been reported, lines 139-40 of the code does this. The

CustomScanIssue method belongs to the ActiveScan++ extension and makes an issue

from the vulnerability, saves the HTTP request and sets up the additional information. If

the extension found any interesting vulnerabilities, then it generates the following issue:

Burp Suite(up) with fancy scanning mechanisms 7

Author Name, email@address

Figure 12. - Reported issue

The request tab contains the detailed trigger information:

Figure 13. - Attack payload

The response tab shows the output of the payload which is the output of the
phpinfo() function:

Burp Suite(up) with fancy scanning mechanisms 8

Author Name, email@address

Figure 14. - Discovered vulnerability

The extension is working properly and can detect the mentioned vulnerability.

2.2. Perl DBI quote bypass
This attack mechanism is based on the DBI quote bypass technique (Netanel

Rubin, 2014). Based on Netanel’s demo code the following CGI script was the testing

interface:

Figure 15. - The vulnerable CGI script

The development tasks are simple, getting the current insertion points, names of

the HTTP parameters and finally add parameters with the same names to the request with

Burp Suite(up) with fancy scanning mechanisms 9

Author Name, email@address

value 2. The getInsertionPoints() is defined inside the BurpExtender class and the

BurpSuite is notified about its presence through

registerScannerInsertionPointProvider(self). When the active scan runs, the scanner

invokes this method and gets a list of the insertion points.

Figure 16. - Getting the URL and HTTP parameters

The scanning engine handles only “pl” and “cgi” extensions:

Figure 17. - Extension validation

The original HTTP request and parameters are given to the constructor of the

InsertionPoint_Perl class:

Figure 18. - Init method of the InsertionPoint_Perl class

The next part of the code copies the actual value of the HTTP parameter with

apostrophe prefix. After this string, there is the insertion point to check the possible SQL

injection attack. The DBI quote bypass requires adding the original parameter name with

value 2, this is the insertionPointSuffix:

Figure 19. - Constructing the proper string to inject the attack payloads

The getInsertionPointName method returns the scanned HTTP parameter name:

Burp Suite(up) with fancy scanning mechanisms 1
0

Author Name, email@address

Figure 20. – getInsertionPointName

The getBaseValue method returns the base value of the actual insertion point:

Figure 21. – getBaseValue

The buildRequest() method creates a new request with the specific payload in the

current insertion point. The payload must be URL-encoded; otherwise, the injection does

not work. The Scanner automatically adjusts the Content-Length header if it is needed.

The updateParameter() method updates the insertion point parameter with the newly

constructed attack string and payload:

Figure 22. - buildRequest method

The actual scanning and issue validation is done by the Scanner engine of Burp

Suite Professional. The getInsertionPoint_Perl class only defines a new insertion point

and adds the bypass parameter:

Figure 23. - The Perl DBI quote bypass vulnerability was found

2.3. Drupal 7 SQL injection vulnerability
Drupal 7 versions before 7.32 contain serious unauthenticated SQL injection

vulnerabilities (Czumak, 2014). The method is almost the same as the Perl DBI quote

Burp Suite(up) with fancy scanning mechanisms 1
1

Author Name, email@address

detection; therefore, this section describes only the differences. The getInsertionPoints

method contains the following conditional:

Figure 24. The scanning function is defined by the extension

If the file extension in URL is not “CGI” or “PL” the Drupal scanning engine is

the active one. At this point, there are some opportunities to reduce the unnecessary

scanning cases for example, excluding the ASPX pages. The important part of the

InsertionPoint_Drupal class is the init method. The lines between 69 and 71 construct the

tricky HTTP parameters and SQL query because the Burp Suite Professional has no

appropriate scanning case:

Figure 25. - Construction of the detection payload

For the testing, the init method must replace the original names of the HTTP

parameters. The insertion point definition cannot do this because the baseValue cannot be

empty. However, the unhandled additional parameters do not affect the server side

processing. The Burp Suite Professional adds the equal sign; thus, the array insertion

point is not easily possible. The “x” HTTP variable is only a prefix padding to make the

insertion into an array. During testing phases, Burp Suite could not find the SQL injection

vulnerabilities, although it would be efficient to use the built-in SQL injection detection

engine. The described method modifies the HTTP request so that Burp Suite would detect

the SQL injection by itself. The 71st line represents the rest of the HTTP parameter string

which is a simple constant except the actual parameter name. After this modification,

Burp Suite is capable of detecting this kind of vulnerability:

Figure 26. - Reported issue

Burp Suite(up) with fancy scanning mechanisms 1
2

Author Name, email@address

Figure 27. - The trigger HTTP request

2.4. UTF8 Cross-Site Scripting
The ValidateRequest filter - if enabled in ASP.net environment - can prevent

script injection attacks. The server does not accept data containing un-encoded HTML.

This defense is easily bypassed with UTF8 encoded payload (Jardine, 2011). The attack

is best for stored XSS detection if the data is stored in an ANSI character field in an SQL

database. This scanning engine has some predefined UTF8 encoded XSS payloads and

some other attack approaches. The engine is based on the mentioned PHP code execution

class. The init method contains the new payload array:

Figure 28. - Payload definition

There is one big problem with this solution if the data visualization is on different

web interfaces. In this implementation, every payload triggers the alert(1) method of

JavaScript. If more payloads trigger the vulnerability after the character conversation, the

scanning engine is not able to detect which is the correct one. The easiest solution is that

every payload must contain different alert string.

The HTTP method handling and parameter collecting are the same as in the PHP

injection class:

Burp Suite(up) with fancy scanning mechanisms 1
3

Author Name, email@address

Figure 29. - HTTP method handling

The following loops inject all the elements of the payload array in every HTTP

parameter value. This can be done by removing the scanned HTTP parameter completely

and add a new one with the iterated attack payload. The newRequest variable contains the

modified HTTP request:

Figure 30. - Constructing the testing payload

The attack payload is sent in the same way as the aforementioned scanning

techniques:

Figure 31. - HTTP request and response

The detection of the successful attack is quite simple. After the character

transformation HTTP response must contain the “>alert(1)<” string. The following code

verifies the existence of the mentioned JavaScript sequence:

Figure 32. - Validation of the vulnerability

The vulnerability reporting is the same as in case of the presented PHP

preg_replace() attack. The testing environment was a simple PHP script with string

replacing function.

Burp Suite(up) with fancy scanning mechanisms 1
4

Author Name, email@address

3. Conclusion
New scanning extension development for Burp Suite Professional is not a very

difficult task considering the accessible documentation, sample codes and support. There

are lots of interesting and unimplemented attack techniques which are good development

goals, like the PHP extract() issue (Dcnoren, 2013). Web bug bounty disclosures are also

a good starting point to get an idea. Improving the scanner engine is a good opportunity

to find exotic or rare vulnerabilities.

The Logger++ extension (Ncc group, 2015) is very useful during the development

process because it can log the packets which are coming from an extension. This is more

practical than checking the HTTP log files or sniffing the network packets. The amount

of the logged data can be reduced by enabling only the tested attack case in the Scanner

or totally disabling the active scanning areas when developing a new scanning method.

Possible further development could be the time based or blind PHP command

injection detection. This version of the scanner can only recognize the case if the

interpreted input is returned. The Perl environment can also be affected by another type

of HTTP parameter pollution (Netanel Rubin, 2014). The improved ActiveScan++ plugin

can be downloaded from GitHub (Silent Signal, 2015).

Burp Suite(up) with fancy scanning mechanisms 1
5

Author Name, email@address

References

Czumak, M. (2014). Drupal 7 SQL Injection (CVE-2014-3704). Retrieved 1 December,

2015, from http://www.securitysift.com/drupal-7-sqli/

David Vieira-Kurz. (2013, 12). EBay:remote-code-execution. [Weblog]. Retrieved 25

November 2015, from http://www.secalert.net/2013/12/13/ebay-remote-code-

execution/

Dcnoren. (2013). PHP extract() Vulnerability. Retrieved 25 November, 2015, from

https://davidnoren.com/2013/07/03/php-extract-vulnerability/

Henry Dalziel. (2015). The 2015 Concise Top Ten Hacker Tools List. Retrieved 25

November, 2015, from https://www.concise-courses.com/hacking-tools/top-ten/

Jardine, J. (2011). Bypassing ValidateRequest. Retrieved 25 November, 2015, from

http://www.jardinesoftware.net/2011/07/17/bypassing-validaterequest/

Kettle, J. (2014). ActiveScan++ Burp Suite Plugin GitHub. Retrieved 25 November,

2015, from https://github.com/albinowax/ActiveScanPlusPlus

Ncc group, S.D. (2015). BApp details: Logger++. Retrieved 25 November, 2015, from

https://portswigger.net/bappstore/ShowBappDetails.aspx?uuid=470b7057b86f41c

396a97903377f3d81

Netanel Rubin. (2014, December). The Perl Jam Exploiting a 20 Year-old Vulnerability.

Paper presented at The 31st Chaos Communication Congress, CCH Congress

Center Hamburg, Germany, Earth, Milky Way. Retrieved from

https://events.ccc.de/congress/2014/Fahrplan/system/attachments/2542/original/th

e-perl-jam-netanel-rubin-31c3.pdf

Portswiggernet. (2015). Burp Extender Documentation. Retrieved 25 November, 2015,

from https://portswigger.net/burp/help/extender.html

Portswiggernet. (2015). Burp Suite Support Center. Retrieved 25 November, 2015, from

https://support.portswigger.net/customer/en/portal/topics/719885-burp-

extensions/questions

Portswiggernet. (2015). Burp Suite User Forum. Retrieved 25 November, 2015, from

http://forum.portswigger.net/

Burp Suite(up) with fancy scanning mechanisms 1
6

Author Name, email@address

Portswiggernet. (2015). Burp Suite. Retrieved 25 November, 2015, from

https://portswigger.net/burp/

Portswiggernet. (2015). Feature Requests. Retrieved 25 November, 2015, from

https://support.portswigger.net/customer/en/portal/topics/719256-feature-

requests/questions

Silent Signal.(2015). ActiveScan3+ Burp Suite Plugin GitHub. Retrieved 15 November,

2015, from https://github.com/silentsignal/ActiveScan3Plus

