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Abstract 

Oracle Forms, a component of Oracle Fusion Middleware is a technology to efficiently 
build browser-based enterprise applications. In order to support multiple transport 
methods Forms has its own binary message format that is meant to provide serialization 
and additional security for the platform. Unfortunately this proprietary format renders 
conventional security testing tools unusable. Reverse engineering methods will be 
employed to reveal the format of the protocol messages and to analyze the cryptographic 
protections in use. It will be shown that the proprietary encryption and key exchange 
schemes can be attacked in multiple ways. New tools will be presented which can be used 
to exploit these weaknesses and allow existing security testing software to be used 
against Oracle Forms applications. Based on the observations deployment best practices 
will also be described to help mitigate the discussed problems. 
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1. Introduction 
To keep up with the increasing rate of web application attacks (Imperva, 2014) a 

wide variety of automated security testing tools have been developed (OWASP, 2014).  

These tools rely on interface and protocol standards so they can be used against various 

applications. 

But what if some of these well-known interfaces are replaced with proprietary 

alternatives? How does such a change affect the work of a penetration tester and the 

opportunities of an attacker? This paper explores these questions through the example of 

Oracle Forms.  

Oracle Forms, a component of Oracle Fusion Middleware is a technology to 

rapidly develop browser-based enterprise applications (Oracle Corporation).  The 

framework is implemented in Java, client-side components run as applets inside the 

browser. Instead of using standard HTTP requests Oracle Forms implements a 

proprietary binary protocol that can be used over raw TCP channels or embedded in 

HTTP. The protocol is encrypted which renders conventional testing tools useless, since 

they are unable to read or modify messages in plain text.  

Oracle Forms is based on the Java applet technology to display client-side 

content. Applets used to provide attractive features long before they were incorporated in 

web browsers (Schuh, 2013). Today the majority of these once unique features became 

part of web browsers (Microsoft Corporation, 2009.). Also the popularity of applets is 

declining because of security concerns (Mimoso, 2013.). Despite these trends Oracle is 

dedicated to continue to support Forms (Oracle Corporation, 2012.). Moreover, migration 

to the more modern Application Development Framework (Oracle Corporation, 2014.) is 

not supported by the vendor (Oracle Corporation, 2012.).  

To support the testing of Oracle Forms applications this paper gives detailed 

description of Oracle’s propriatery protocol. Multiple vulnerabilities of the encryption 

scheme are shown which can be exploited by passive and active network attackers. Based 

on the analysis the possibilities and challenges of automated testing are assessed. Proof of 
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concept software is presented that demonstrate attacks, and can be used directly or as a 

base of more advanced tools for security testing Oracle Forms applications. 

At the time of writing the latest version of Oracle Forms is 11g, all findings are 

based on this version. Source code of the presented tools are available at 

http://github.com/v-p-b/oracle_forms/. 

2. Security Analysis of Oracle Forms 
2.1. The Oracle Forms Protocol 

To assess the security of a web application framework (and the applications built 

on it) detailed understanding of its communication protocol is required. Oracle Forms is 

written in Java so the byte-code of its components can be easily decompiled. This way a 

“white box” approach (Girish Janardhanudu, 2005) can be taken for protocol analysis. 

The main source of information was the decompiled byte-code of the 

frmall.jar archive. The frmall.jar archive contains the framework code that is to 

be loaded client side when using Oracle Forms. The code snippets in the following 

subsections are taken from this archive. The decompilation was done using the JAD 

decompiler (Java Decompilers Online, 2015) via the following command (Linux BASH): 

unzip frmall.jar; find oracle/ -name '*.class' -execdir jad {} \; 

Among the decompiled pseudo-code the encrypted communication was 

intercepted and analyzed with Burp Suite Professional (PortSwigger Ltd.).  

2.1.1. Encryption and Key Exchange 

Since Oracle Forms supports plain text communication channels the framework 

provides additional encryption in the application layer (Oracle Corporation, 2009). The 

documentation provided by the vendor doesn’t specify the level of protection this 

encryption layer is meant to provide. The FAQ only states that the encryption scheme is 

“not as strong as the SSL standard” (Oracle Corporation, 2009). An older version of the 

documentation states that 40-bit RC4 encryption is used when communicating over plain 

text channel (Oracle Corporation, 2009). RC4 is a symmetric stream cipher designed by 

Ron Rivest in 1987 (Ron L. Rivest, 2014) and later became part of important protocols 
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such as the SSL and TLS protocol families (IETF, 2008.). Later the cipher was found to 

be vulnerable against multiple cryptographic attacks. An overview of these attacks is 

presented in section 2.2.1. 

Aside from the cryptographic strength of the employed cipher, the security of a 

protocol is also dependent on how the algorithm is used. The oracle.forms.net package 

contains the classes related to network communication. Communication is supported over 

raw TCP sockets or wrapped inside HTTP or HTTPS protocols.   

Connection classes (HTTPConnection, SocketConnection) are responsible for 

establishing communication channels between the Oracle Forms client and server. This 

task includes cryptographic negotiations and proxy support. Key exchange is performed 

by these classes in the following way (taken from the HTTPConnection class): 

dataoutputstream.writeInt(NEG_SEND); // NEG_SEND = 0x47446179 

int i; 

dataoutputstream.writeInt(i = (new Random()).nextInt()); 

dataoutputstream.flush(); 

int k = datainputstream.readInt(); 

int j = datainputstream.readInt(); 

if(k == NEG_RESPONSE) // NEG_RESPONSE = 0x4d617465 

{    

    byte abyte0[] = new byte[5]; 

    abyte0[0] = (byte)(i >> 8);  

    abyte0[1] = (byte)(j >> 4);  

    abyte0[2] = -82; 

    abyte0[3] = (byte)(i >> 16); 

    abyte0[4] = (byte)(j >> 12); 

    if(mUseNativeHTTP) 

        mHNs.setEncryptKey(abyte0); 

    else 

        mHs.setEncryptKey(abyte0); 

} 

The client first sends the NEG_SEND constant (equivalent to the ASCII “GDay” 

string) to the server along with a random integer. Then it waits for the server to send the 

NEG_RESPONSE constant (equivalent to the ASCII “Mate” string) and another integer. 
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The two integers are then used to construct the 5 byte (40-bit) long abyte byte array that 

is passed to the setEncryptKey() methods of two Stream objects. 

Stream objects are either instances of the EncryptedInputStream and 

EncryptedOutputStream classes or wrappers around these classes (in case of 

HTTPConnection). These classes perform the actual encryption and decryption of the 

data streams. Review of the pseudo-code confirms that the cipher in use is indeed RC4 

and that the key of the cipher is the one passed to the setEncryptKey() methods (the 

relevant pseudo-code is included in the Appendix). This observation confirms that 

although there are 64 bits of key material exchanged on protocol initiation and the key 

length of RC4 is 40 bits, the effective key length of the encryption is only 32 bits since 

the third byte of the key is always -82 (0xAE). 

After the key is set encryption and decryption is performed byte-by-byte on the 

data streams, no message authentication or integrity checking takes place. The structure 

of the underlying data is determined by the proprietary message format of Oracle Forms.  

2.1.2. Message Format 

Source code review revealed that Oracle Forms implements a custom serialization 

format to transmit different Java objects over the network. The serialization is 

implemented in the Message class of the oracle.java.forms.engine package. A Message 

represents a series of Properties representing Java basic types and objects. Messages can 

be nested: a Message object can hold other Message objects as its Properties.  

Messages start with a variable sized header that identifies the type of the Message. 

Message types can describe standard CRUD (Create, Read, Update, Delete) functionality 

and there are also 4 protocol specific message types: two types to indicate “delta” 

messages and two types to indicate “client” messages. These message types aren’t further 

investigated as they don’t affect the data representation format of the protocol.  

After the header the Properties of the Message are serialized sequentially. A 

serialized property starts with a 2 or 3 byte prefix (header) that indicates its type. After 

the prefix the determining parameters of the objects follow as an unaligned byte stream. 

The serialization formats of the serializable types are summarized in the following table: 
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1.#Table#Object#serialization#formats#
Type Property Type Header Representation 

Boolean (true) 0x5000 N/A 

Boolean (false) 0x6000 N/A 

Integer (0) 0x1000 N/A 

Integer 

(0-255) 

0x2000 Integer value as 1 byte 

Integer 

(255-65535) 

0x3000 Integer value as 2 bytes 

Integer (other) 0x0000 Value as 4 bytes 

String 0x4000 1 byte identifier (see description below) 

Length: 2 bytes  

UTF-8 string buffer 

String reference 0x9000 1 byte identifier 

1 byte new identifier (see description 

below) 

Byte 0x7000 Byte value 

null 0x8000 N/A 

String[] 0xE00002 Array length: 1 byte 

UTF-8 Strings with 2 byte length 

prefixes 

Float 0xE00005 Float value 

Date 0xE00006 Timestamp represented on 8 bytes 

byte[] 0xE00007 

0xE0000F 

Array length: 1 byte 

Array elements 
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Message 0xE00008 Serialized Message 

Rectangle 0xE0000A Coordinate X: 2 bytes  

Coordinate Y: 2 bytes 

Width: 2 bytes 

Height: 2 bytes 

Point 0xC000 

0xA000 

Coordinate X: 1 or 2 bytes 

Coordinate Y:1 or 2 bytes 

Character 0xE00004 UTF-8 character (2 bytes) 

DeleteMask 0xD000 2-byte identifier 

 

Boolean values, null and the Integer value 0 is encoded inside the property 

header. Integers bigger than 0 are “optimized”, so that they acquire as many bytes as their 

value require. All numbers are big endian. 

String objects can be cached and then referenced by later Properties. As String 

objects are encountered, they are stored in a String array indexed with the 1-byte 

identifier following the type prefix. Later Properties can reference previous Strings by 

using the 0x9000 type prefix and supplying the String identifier. String references also 

cause the value of the String cache replaced with another element (pointed by the second 

byte after the type prefix) of the cache array. 

Messages end with the byte value -16 (0xF0). A single HTTP message can hold 

multiple Messages. The end of the Message sequence is indicated by the 0xF001 byte 

pair.  

To help interpreting decrypted Messages a simple test program 

(MessageTester.java) was created. The program takes the hexadecimal 

representation of a message as an argument and parses it using the packages of 

frmall.jar. The decompiled source of the oracle.forms.engine.Message class can be 
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provided to standard debugging tools to allow step-by-step tracing of the parser. A 

decrypted Message stream is provided below as an example: 

10000b50adf010002450aef0100006a089038402bcf0f001 

The stream consists of three Messages: two boolean values and a Point object. 

Message headers (blue) are three bytes long. In case of boolean values the type identifier 

prefix (orange) encodes the value (0x5000 - true) itself. The coordinate values of the 

Point are represented as two 2-byte values (green). In this case the Point is at the 

(900,700) coordinate (0x384,0x2bc). Message terminators (0xF0) are marked red. The 

final Message is indicated by the 0xF001 sequence (black). 

2.2. Attacks on Cryptography 

2.2.1. Overview of RC4 weaknesses 

Because of its cryptographic weaknesses the prohibition of use of RC4 in TLS 

protocols is proposed by IETF in RFC7465 (Popov, 2015.). That decision was induced by 

the results of AlFardan et al. showing that plaintext recovery is possible under realistic 

circumstances (Nadhem AlFardan, 2013.).  The attacks proposed by this research”require 

a fixed plaintext to be RC4-encrypted and transmitted many times in succession” and 

”large amounts of ciphertext” to be recorded. The first requirement is met because the 

initialization messages of Oracle Forms are mostly static (see section 2.2.3). The 

fulfillment of the second requirement is dependent on the particular target. It’s also worth 

noting that the attacks were developed against the 128-bit version of the cipher while 

Oracle Forms uses the weakest, 40-bit version. This may reduce the complexity of attacks 

significantly.  

While the known cryptanalytic attacks seem applicable to Oracle Forms their 

implementation is out of the scope of this paper. The following sections provide more 

effective ways to break the security of the communication exploiting the naive use of 

cryptography. 

2.2.2. Passive Network Attacks 

In a passive network attack the attacker intercepts the entire communication 

between the Oracle Forms client and the server. In this case the key exchange scheme 



Automated Security Testing of Oracle Forms Applications! 9 
!

Author!Name,!email@address! ! !

described in 2.1.1 can be trivially attacked: The attacker intercepts both the server- and 

client-supplied components of the key and constructs the RC4 key that can be used to 

decrypt the whole encrypted data stream. This approach is implemented in the 

OracleFormsTester Burp Suite extension accompanying this document.   

This attack against the key exchange renders encryption useless because a passive 

attacker can obtain the key. If no other protections (like TLS or IPsec) are implemented 

the security of communication is equivalent to plain HTTP. 

2.2.3. Active Network Attacks 

During an active network attack the attacker can intercept and modify any traffic 

passing between the Oracle Forms server and client. One of the countermeasures against 

these attacks is mutual authentication that prevents the attacker from acting as a man in 

the middle. Oracle Forms doesn’t implement any authentication scheme at the network 

level, the only requirement for a man-in-the-middle attack is the knowledge of the 

protocol of the framework.  

Another important countermeasure against active attacks is integrity checking that 

is especially important when using stream ciphers like RC4 to avoid bit-flipping attacks 

(David LeBlank, 2002). In a bit-flipping attack the attacker takes advantage of the 

general structure of stream ciphers to modify bits in the decrypted plaintext by flipping 

bits at the same position in the ciphertext. Since Oracle Forms doesn’t implement 

integrity protection bit-flipping attacks can be trivially mounted. For the bit-flipping to be 

meaningful the attacker must predict the position of the data to be corrupted.  

In case of Oracle Forms there is an obvious opportunity for exploitation during 

the standard applet initialization phase. In this phase the client sends an Oracle 

configuration string to the server. This string usually contains the name or IP address of 

the Oracle server to connect to. The offset of the server location substring is predictable 

because the format of the configuration string is known and it is always sent at the start of 

the first client request.  

The following screenshots show how an encrypted request was edited using Burp 

Suite. The configuration string of the original request was: 
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server escapeParams=true module=tuto_forms.fmx 

userid=SYSTEM/oracle@127.0.0.1/XE  sso_userid=%20 

sso_formsid=%25OID_FORMSID%25 sso_subDN= sso_usrDN= debug=no 

host= port= buffer_records=no              debug_messages=no 

array=no obr=no query_only=no quiet=yes render=no record= 

tracegroup= log= term= 

The original configuration pointed to the Oracle database at 127.0.0.1. As a 

demonstration the bits of 2nd and 3rd bytes of the IP address were flipped to make up the 

“72” substring: 

 

1.#Figure#Original#encrypted#request#containing#database#connection#information#
 

 

2.#Figure#Edited##encrypted#request#containing#database#connection#information#
 

After the edited request was forwarded to the server connection attempts to the 

172.0.0.1 address were registered by the Wireshark network analyzer. Since this host 

didn’t exist the connection timed out and the client reported an error. After the error was 

dismissed the client displayed a login window containing the modified IP address. 
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3.#Figure#Results#of#bit@flipping#at#client#and#server#side#
 

This proof-of-concept attack demonstrates that the encryption scheme is 

vulnerable to bit-flipping attacks independently from the strength of the key-exchange 

protocol phase.  

2.2.4. Insecure password handling 

In section 2.2.3 the database user and the password were configured server side, 

but the modified packet containing the same information was sent by the client. This 

means that Oracle Forms sends the configured database credentials to its clients. 

This creates a security weakness that allows unauthenticated attackers to obtain the 

configured password. The credentials are sent to the client in response to a request similar 

to the following: 

GET 

/forms/lservlet;jsessionid=sessionid?ifcmd=getinfo&ifhost=hostnam

e&ifip=192.168.1.1 HTTP/1.0 

The response contains the credentials encoded with the DEFLATE algorithm 

(Deutsch, 1996). The response body can be decoded using the zlib library (Akira, 2010): 
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python -c "import zlib,sys;print \ 

repr(zlib.decompress(sys.stdin.read()))" < creds.bin 

Further research is required to assess if other configuration parameters sent by the 

client can be used to conduct attacks. 

2.2.5. Brute-force 

If an attacker can intercept only a subset of encrypted HTTP messages (e.g. when 

performing an ARP poisoning attack (Jeff King, 2010)) she can’t rely on the weak key 

exchange scheme as the required key material is not necessarily included in the captured 

packets. 

Since the key size of the protocol is effectively 32-bits (see 2.1.1) brute-force 

attacks against the captured ciphertext can be practical. As a proof of concept a primitive 

Java program (OracleFormsBruteForce.java) was built that decrypts a given 

ciphertext with every possible key and detects if the resulting plaintext is a valid Oracle 

Forms Message. This program is suboptimal as it is written in a high level language, runs 

only a single thread, decrypts the whole message every time, etc. Still, the program 

performs around 180.000 tries per second on a dual core Intel Core i5-520M (2.4 GHz) 

CPU. At this speed a valid key is found from the 32-bit key-space in 3.3 hours on 

average.  

The average attack speed could probably be reduced to minutes on average 

hardware but further optimizations were not made as the approach has serious practical 

limitations: The assumption that the attacker doesn’t intercept the communication from 

the beginning implies that the attacker doesn’t know which part of the stream she is 

intercepting. To measure the effect of this uncertainty a modified version of the brute-

force program was built that predicts parts of the keystream assuming that the intercepted 

ciphertext begins with a known 3-byte header (see 2.1.2). RC4 works by generating a 

pseudo-random byte stream (the keystream) that is XOR-ed with the bytes of the 

plaintext. To predict part of the matching keystream the first 3 bytes of the ciphertext is 

XOR-ed with the presumed plaintext header bytes. Then an n byte long keystream is 

generated in which the program looks for the predicted byte triplet for every possible key. 

It is assumed that the attacker knows which part of the cipher stream she intercepted with 
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n byte precision. If the program finds a match it tries to use the keystream from the 

matching offset to decrypt the whole ciphertext. If the decryption results in a valid 

protocol message the key (and the matching offset) is found. The following diagram 

shows how the performance of brute-force search is impacted as n grows: 

 

4.#Figure#Brute@force#performance#in#unsynchronized#state#
 

The diagram shows that loosing synchronization with the stream cipher has 

serious impact on the performance of a brute-force attack. Such an attack may be feasible 

if the average sessions are relatively short or if the attacker can obtain additional 

information about the state of the cipher.  

It’s worth noting that this is not just a limitation for the attacker: In case of 

network problems legitimate Oracle Forms peers can easily lose sync.  

2.3. Test Automation 
Testing is a fundamental part of any software development process, that helps 

eliminate a wide range of errors from simple usability issues to critical vulnerabilities. 

Although manual testing can’t be avoided test automation is fundamental to maintain 

large software projects. In terms of security it is crucial to be able to effectively run a 

high number of test cases (like generic patterns of injection attacks) in a black-box 

manner.   
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In the case of Oracle Forms this effort is hindered by several factors: The 

application protocol is undocumented, the communication is encrypted and the testing 

tools provided by the vendor are integrated strongly with its proprietary tools (Oracle 

Corporation, 2009.).  

The results of reverse engineering described in section 2.1 makes it possible to 

create tools which can interact with Oracle Forms applications without having access to 

the server-side components or source code. A Proof of Concept extension, 

OracleFormsTester was built for Burp Suite Professional that demonstrates the practical 

application of the revealed details and also the challenges of the automated testing. 

2.3.1. Test software design 

The main automated testing component of Burp Suite is the Scanner that works 

by taking HTTP requests issued by the browser and replays them with modified content. 

The modifications are based on a large set of rules which define several payloads to be 

inserted as part of HTTP (or REST, etc.) parameters. To achieve similar result in case of 

Oracle Forms the testing software has to: 

1. Intercept the traffic of the Oracle Forms applet 

2. Decrypt the intercepted request 

3. Identify potential insertion points (Message parsing) 

4. Insert payload (Message serialization) 

5. Encrypt and resend the modified request 

Sample traffic can be easily intercepted by setting the proxy server used by the 

Java runtime to the address of an intercepting proxy (like Burp Suite). In the case of a 

raw TCP channel the routing table of the client can be modified to run traffic through an 

intercepting network node. 

While both cryptographic operations and Message handling tasks may seem 

challenging the Java technology allows easy code reuse: During normal operation the 

client-side part of the Oracle Forms framework (frmall.jar) is sent to the client for 

use as part of the applet. The downloaded archive contains all code that is required to 

parse and create valid protocol messages. The archive can be saved and reused in custom 

programs by simply adding it to the Java classpath.  
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2.3.2. Decryption and Encryption 

Decryption and encryption is implemented in the EncryptedInputStream and 

EncryptedOutputStream classes of the oracle.forms.net package. The classes are inherited 

from “filter” stream classes (FilterInputStream, FilterOutputStream) which can serve as a 

transformation layer for other basic streams (like data or byte streams). Since a standard 

cipher is employed, independent implementations can also be used without modification. 

The encryption key can be trivially derived from the intercepted traffic.  

The following screenshots demonstrate successful decryption of Oracle Forms 

Messages through the Message Editor Tab introduced by OracleFormsTester: 

 

5.#Figure#Intercepted#request#(encrypted)#
!

 

6.#Figure#Decrypted#body#of#intercepted#request#
!

Both the HTTP protocol and the Message format are stateless: valid messages can 

be constructed independently from each other. Encryption however requires the internal 

states of the ciphers at client and server side to be synchronized. This means that issuing 

new messages independently from the client makes the applet unable to communicate 

with the server. Also, corrupted messages (like heartbeats) sent by the client can 
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desynchronize the testing tool. Both problems can be solved by shutting down the client 

as the testing starts. A more advanced solution is to block the traffic of the client while 

the tests run and then setting the internal state of the cipher appropriately via a debugger. 

In case of OracleFormsTester every decrypted request body and the 

corresponding cipher state are stored in a HashMap indexed by the hash of the encrypted 

body. This way plaintext messages can be found for every intercepted ciphertext. The 

recoded plaintext messages are also used to select all String properties as Scanner 

insertion points. When the Scanner runs the Messages are deserialized (see section 2.3.3), 

the insertion points are replaced with the upcoming payload then the Message is 

serialized and encrypted again.  

2.3.3. Message parsing and serialization 

Message parsing and serialization are performed by the writeDetails() and 

readDetails() methods of the Message class. These implementations can be easily reused, 

but successful message parsing requires taking care of two important details. First, the 

readDetails() method should be invoked with a valid String array as its second argument 

to support String caching (see section 2.1.2). Second, when decrypting Messages the 

EncryptedInputStream(InputStream, boolean) constructor should be used with the second  

argument set to true to initialize deciphering objects. This is important because the single 

argument constructor declares only a 7800 bytes long internal buffer for the stream while 

the two argument version declares 8192 bytes. Since some initial protocol messages 

usually exceed 7800 bytes they can’t be read in a single run with the smaller buffer.  

Successful Message parsing can be confirmed in the debug output of the 

OrcleFormsTester extension: 

Oracle Forms Tester loaded 
Found GDay! 
Found GDay! f1dbf270 
Found Mate! 00000390 
RC4 Key: f239aedb00 
[...] 
Encrypted Request: 77d4f3cdc03b22d2beb9ed71 
506fd22b5a9b50757516f1b341423f546127b524d4189c15afa244dabefe1e6d 
Body: 12 byte(s) 
Property 0: 137 Type: 9 
--- Value: java.awt.Point[x=900,y=700] 
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Message OK 
100006a089038402bcf0f001 

2.4. Deployment Best Practices 
The attacks presented in section 2.2 showed that despite the encryption the 

security of the Oracle Forms protocol is nearly equivalent to a plain text channel. The 

transferred data should be protected with standard technologies like TLS or IPsec.  

Oracle Forms shouldn’t be configured with database access credentials since this 

information is sent to the clients as described in section 2.2.4. The userid parameter 

should be set empty in the formsweb.cfg configuration file (Oracle Corporation, 2006). 

Database passwords of existing installations with similar configuration should be 

considered compromised. 

3. Conclusion 
This paper gave detailed overview on the communication protocol of Oracle 

Forms and presented tools and methods to support automated testing. Multiple attacks 

were presented which prove that the protective features of the framework give a false 

sense of security as they can be circumvented easily. 

Although Oracle Forms is meant to be a tool for Rapid Application Development 

(Oracle Corporation, 2009) it hinders testing – one of the most important steps of 

development – considerably. While test automation is possible, complex tools must be 

built to support Oracle Forms. This property doesn’t only affect the security of Oracle 

Forms based applications but the general quality of them too. A symptom of this 

inadequacy is that this research revealed fundamental security weaknesses which would 

likely have been found and mitigated in time in case of a more open technology. 

The presented results confirm the opinion that Oracle Forms is an obsolete 

technology and applications should be replaced (Berg, 2013). Hopefully the provided 

information will help assessing the quality of the live applications and migrating them to 

more modern platforms. Further research is required to determine if the design of Oracle 

Forms introduce security risks that may affect a wider range of applications. 
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Appendix 
 

Decompiled RC4 pseudo-code 

Relevant methods decompiled from oracle.forms.net.EncryptedInputStream: 
    public synchronized void setEncryptKey(byte abyte0[]) 

    { 

        if(abyte0 == null || abyte0.length == 0 || abyte0.length 

> 256) 

            throw new RuntimeException(); 

        mSeedBuffer = new int[256]; 

        mI = mJ = 0; 

        for(int i = 0; i < 256; i++) 

            mSeedBuffer[i] = i; 

 

        int l; 

        int k = l = 0; 

        for(int j = 0; j < 256; j++) 

        { 

            l = (l + (abyte0[k] & 0xff) + mSeedBuffer[j]) % 256; 

            int i1 = mSeedBuffer[j]; 

            mSeedBuffer[j] = mSeedBuffer[l]; 

            mSeedBuffer[l] = i1; 

            k = (k + 1) % abyte0.length; 

        } 

 

    } 

 

    public synchronized int read() 

        throws IOException 

    { 

        if(mPos == mLength) 

        { 

            fill(); 

            if(mPos == mLength) 
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                return -1; 

        } 

        return mBuf[mPos++] & 0xff; 

    } 

 

    public synchronized int read(byte abyte0[], int i, int j) 

        throws IOException 

    { 

        if(mPos + j > mLength) 

        { 

            fill(); 

            if(mPos >= mLength) 

                return -1; 

        } 

        int k = mLength - mPos; 

        k = k >= j ? j : k; 

        System.arraycopy(mBuf, mPos, abyte0, i, k); 

        mPos += k; 

        return k; 

    } 

    private void fill() 

        throws IOException 

    {    

        int i; 

        if(mPos == mLength) 

        {    

            mLength = 0; 

            i = 0; 

        } else 

        {    

            mLength = mLength - mPos; 

            System.arraycopy(mBuf, mPos, mBuf, 0, mLength); 

            i = mLength; 

        }    

        int j = mIstream.read(mBuf, i, mBuf.length - i);  
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        if(j > 0) 

        {    

            mLength += j; 

            mBytesCount += j; 

        }    

        mPos = 0; 

        int ai[] = mSeedBuffer; 

        if(ai != null) 

        {    

            int k = mI;  

            int l = mJ;  

            for(int i1 = i; i1 < mLength; i1++) 

            {    

                k = (k + 1) % 256; 

                l = (ai[k] + l) % 256; 

                int j1 = ai[k]; 

                ai[k] = ai[l]; 

                ai[l] = j1;  

                mBuf[i1] ^= ai[(ai[k] + j1) % 256]; 

            }    

 

            mI = k; 

            mJ = l; 

        }    

    } 

 

 

 


