
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

!!
!

!

Automated Security Testing of Oracle Forms
Applications

GIAC (GWAPT) Gold Certification

Author: Bálint Varga-Perke, vpbalint@silentsignal.hu
Advisor: Rick Wanner

Accepted: May 15, 2015

Abstract

Oracle Forms, a component of Oracle Fusion Middleware is a technology to efficiently
build browser-based enterprise applications. In order to support multiple transport
methods Forms has its own binary message format that is meant to provide serialization
and additional security for the platform. Unfortunately this proprietary format renders
conventional security testing tools unusable. Reverse engineering methods will be
employed to reveal the format of the protocol messages and to analyze the cryptographic
protections in use. It will be shown that the proprietary encryption and key exchange
schemes can be attacked in multiple ways. New tools will be presented which can be used
to exploit these weaknesses and allow existing security testing software to be used
against Oracle Forms applications. Based on the observations deployment best practices
will also be described to help mitigate the discussed problems.

Automated Security Testing of Oracle Forms Applications! 2
!

Author!Name,!email@address! ! !

1. Introduction
To keep up with the increasing rate of web application attacks (Imperva, 2014) a

wide variety of automated security testing tools have been developed (OWASP, 2014).

These tools rely on interface and protocol standards so they can be used against various

applications.

But what if some of these well-known interfaces are replaced with proprietary

alternatives? How does such a change affect the work of a penetration tester and the

opportunities of an attacker? This paper explores these questions through the example of

Oracle Forms.

Oracle Forms, a component of Oracle Fusion Middleware is a technology to

rapidly develop browser-based enterprise applications (Oracle Corporation). The

framework is implemented in Java, client-side components run as applets inside the

browser. Instead of using standard HTTP requests Oracle Forms implements a

proprietary binary protocol that can be used over raw TCP channels or embedded in

HTTP. The protocol is encrypted which renders conventional testing tools useless, since

they are unable to read or modify messages in plain text.

Oracle Forms is based on the Java applet technology to display client-side

content. Applets used to provide attractive features long before they were incorporated in

web browsers (Schuh, 2013). Today the majority of these once unique features became

part of web browsers (Microsoft Corporation, 2009.). Also the popularity of applets is

declining because of security concerns (Mimoso, 2013.). Despite these trends Oracle is

dedicated to continue to support Forms (Oracle Corporation, 2012.). Moreover, migration

to the more modern Application Development Framework (Oracle Corporation, 2014.) is

not supported by the vendor (Oracle Corporation, 2012.).

To support the testing of Oracle Forms applications this paper gives detailed

description of Oracle’s propriatery protocol. Multiple vulnerabilities of the encryption

scheme are shown which can be exploited by passive and active network attackers. Based

on the analysis the possibilities and challenges of automated testing are assessed. Proof of

Automated Security Testing of Oracle Forms Applications! 3
!

Author!Name,!email@address! ! !

concept software is presented that demonstrate attacks, and can be used directly or as a

base of more advanced tools for security testing Oracle Forms applications.

At the time of writing the latest version of Oracle Forms is 11g, all findings are

based on this version. Source code of the presented tools are available at

http://github.com/v-p-b/oracle_forms/.

2. Security Analysis of Oracle Forms
2.1. The Oracle Forms Protocol

To assess the security of a web application framework (and the applications built

on it) detailed understanding of its communication protocol is required. Oracle Forms is

written in Java so the byte-code of its components can be easily decompiled. This way a

“white box” approach (Girish Janardhanudu, 2005) can be taken for protocol analysis.

The main source of information was the decompiled byte-code of the

frmall.jar archive. The frmall.jar archive contains the framework code that is to

be loaded client side when using Oracle Forms. The code snippets in the following

subsections are taken from this archive. The decompilation was done using the JAD

decompiler (Java Decompilers Online, 2015) via the following command (Linux BASH):

unzip frmall.jar; find oracle/ -name '*.class' -execdir jad {} \;

Among the decompiled pseudo-code the encrypted communication was

intercepted and analyzed with Burp Suite Professional (PortSwigger Ltd.).

2.1.1. Encryption and Key Exchange

Since Oracle Forms supports plain text communication channels the framework

provides additional encryption in the application layer (Oracle Corporation, 2009). The

documentation provided by the vendor doesn’t specify the level of protection this

encryption layer is meant to provide. The FAQ only states that the encryption scheme is

“not as strong as the SSL standard” (Oracle Corporation, 2009). An older version of the

documentation states that 40-bit RC4 encryption is used when communicating over plain

text channel (Oracle Corporation, 2009). RC4 is a symmetric stream cipher designed by

Ron Rivest in 1987 (Ron L. Rivest, 2014) and later became part of important protocols

Automated Security Testing of Oracle Forms Applications! 4
!

Author!Name,!email@address! ! !

such as the SSL and TLS protocol families (IETF, 2008.). Later the cipher was found to

be vulnerable against multiple cryptographic attacks. An overview of these attacks is

presented in section 2.2.1.

Aside from the cryptographic strength of the employed cipher, the security of a

protocol is also dependent on how the algorithm is used. The oracle.forms.net package

contains the classes related to network communication. Communication is supported over

raw TCP sockets or wrapped inside HTTP or HTTPS protocols.

Connection classes (HTTPConnection, SocketConnection) are responsible for

establishing communication channels between the Oracle Forms client and server. This

task includes cryptographic negotiations and proxy support. Key exchange is performed

by these classes in the following way (taken from the HTTPConnection class):

dataoutputstream.writeInt(NEG_SEND); // NEG_SEND = 0x47446179

int i;

dataoutputstream.writeInt(i = (new Random()).nextInt());

dataoutputstream.flush();

int k = datainputstream.readInt();

int j = datainputstream.readInt();

if(k == NEG_RESPONSE) // NEG_RESPONSE = 0x4d617465

{

 byte abyte0[] = new byte[5];

 abyte0[0] = (byte)(i >> 8);

 abyte0[1] = (byte)(j >> 4);

 abyte0[2] = -82;

 abyte0[3] = (byte)(i >> 16);

 abyte0[4] = (byte)(j >> 12);

 if(mUseNativeHTTP)

 mHNs.setEncryptKey(abyte0);

 else

 mHs.setEncryptKey(abyte0);

}

The client first sends the NEG_SEND constant (equivalent to the ASCII “GDay”

string) to the server along with a random integer. Then it waits for the server to send the

NEG_RESPONSE constant (equivalent to the ASCII “Mate” string) and another integer.

Automated Security Testing of Oracle Forms Applications! 5
!

Author!Name,!email@address! ! !

The two integers are then used to construct the 5 byte (40-bit) long abyte byte array that

is passed to the setEncryptKey() methods of two Stream objects.

Stream objects are either instances of the EncryptedInputStream and

EncryptedOutputStream classes or wrappers around these classes (in case of

HTTPConnection). These classes perform the actual encryption and decryption of the

data streams. Review of the pseudo-code confirms that the cipher in use is indeed RC4

and that the key of the cipher is the one passed to the setEncryptKey() methods (the

relevant pseudo-code is included in the Appendix). This observation confirms that

although there are 64 bits of key material exchanged on protocol initiation and the key

length of RC4 is 40 bits, the effective key length of the encryption is only 32 bits since

the third byte of the key is always -82 (0xAE).

After the key is set encryption and decryption is performed byte-by-byte on the

data streams, no message authentication or integrity checking takes place. The structure

of the underlying data is determined by the proprietary message format of Oracle Forms.

2.1.2. Message Format

Source code review revealed that Oracle Forms implements a custom serialization

format to transmit different Java objects over the network. The serialization is

implemented in the Message class of the oracle.java.forms.engine package. A Message

represents a series of Properties representing Java basic types and objects. Messages can

be nested: a Message object can hold other Message objects as its Properties.

Messages start with a variable sized header that identifies the type of the Message.

Message types can describe standard CRUD (Create, Read, Update, Delete) functionality

and there are also 4 protocol specific message types: two types to indicate “delta”

messages and two types to indicate “client” messages. These message types aren’t further

investigated as they don’t affect the data representation format of the protocol.

After the header the Properties of the Message are serialized sequentially. A

serialized property starts with a 2 or 3 byte prefix (header) that indicates its type. After

the prefix the determining parameters of the objects follow as an unaligned byte stream.

The serialization formats of the serializable types are summarized in the following table:

Automated Security Testing of Oracle Forms Applications! 6
!

Author!Name,!email@address! ! !

1.#Table#Object#serialization#formats#
Type Property Type Header Representation

Boolean (true) 0x5000 N/A

Boolean (false) 0x6000 N/A

Integer (0) 0x1000 N/A

Integer

(0-255)

0x2000 Integer value as 1 byte

Integer

(255-65535)

0x3000 Integer value as 2 bytes

Integer (other) 0x0000 Value as 4 bytes

String 0x4000 1 byte identifier (see description below)

Length: 2 bytes

UTF-8 string buffer

String reference 0x9000 1 byte identifier

1 byte new identifier (see description

below)

Byte 0x7000 Byte value

null 0x8000 N/A

String[] 0xE00002 Array length: 1 byte

UTF-8 Strings with 2 byte length

prefixes

Float 0xE00005 Float value

Date 0xE00006 Timestamp represented on 8 bytes

byte[] 0xE00007

0xE0000F

Array length: 1 byte

Array elements

Automated Security Testing of Oracle Forms Applications! 7
!

Author!Name,!email@address! ! !

Message 0xE00008 Serialized Message

Rectangle 0xE0000A Coordinate X: 2 bytes

Coordinate Y: 2 bytes

Width: 2 bytes

Height: 2 bytes

Point 0xC000

0xA000

Coordinate X: 1 or 2 bytes

Coordinate Y:1 or 2 bytes

Character 0xE00004 UTF-8 character (2 bytes)

DeleteMask 0xD000 2-byte identifier

Boolean values, null and the Integer value 0 is encoded inside the property

header. Integers bigger than 0 are “optimized”, so that they acquire as many bytes as their

value require. All numbers are big endian.

String objects can be cached and then referenced by later Properties. As String

objects are encountered, they are stored in a String array indexed with the 1-byte

identifier following the type prefix. Later Properties can reference previous Strings by

using the 0x9000 type prefix and supplying the String identifier. String references also

cause the value of the String cache replaced with another element (pointed by the second

byte after the type prefix) of the cache array.

Messages end with the byte value -16 (0xF0). A single HTTP message can hold

multiple Messages. The end of the Message sequence is indicated by the 0xF001 byte

pair.

To help interpreting decrypted Messages a simple test program

(MessageTester.java) was created. The program takes the hexadecimal

representation of a message as an argument and parses it using the packages of

frmall.jar. The decompiled source of the oracle.forms.engine.Message class can be

Automated Security Testing of Oracle Forms Applications! 8
!

Author!Name,!email@address! ! !

provided to standard debugging tools to allow step-by-step tracing of the parser. A

decrypted Message stream is provided below as an example:

10000b50adf010002450aef0100006a089038402bcf0f001

The stream consists of three Messages: two boolean values and a Point object.

Message headers (blue) are three bytes long. In case of boolean values the type identifier

prefix (orange) encodes the value (0x5000 - true) itself. The coordinate values of the

Point are represented as two 2-byte values (green). In this case the Point is at the

(900,700) coordinate (0x384,0x2bc). Message terminators (0xF0) are marked red. The

final Message is indicated by the 0xF001 sequence (black).

2.2. Attacks on Cryptography

2.2.1. Overview of RC4 weaknesses

Because of its cryptographic weaknesses the prohibition of use of RC4 in TLS

protocols is proposed by IETF in RFC7465 (Popov, 2015.). That decision was induced by

the results of AlFardan et al. showing that plaintext recovery is possible under realistic

circumstances (Nadhem AlFardan, 2013.). The attacks proposed by this research”require

a fixed plaintext to be RC4-encrypted and transmitted many times in succession” and

”large amounts of ciphertext” to be recorded. The first requirement is met because the

initialization messages of Oracle Forms are mostly static (see section 2.2.3). The

fulfillment of the second requirement is dependent on the particular target. It’s also worth

noting that the attacks were developed against the 128-bit version of the cipher while

Oracle Forms uses the weakest, 40-bit version. This may reduce the complexity of attacks

significantly.

While the known cryptanalytic attacks seem applicable to Oracle Forms their

implementation is out of the scope of this paper. The following sections provide more

effective ways to break the security of the communication exploiting the naive use of

cryptography.

2.2.2. Passive Network Attacks

In a passive network attack the attacker intercepts the entire communication

between the Oracle Forms client and the server. In this case the key exchange scheme

Automated Security Testing of Oracle Forms Applications! 9
!

Author!Name,!email@address! ! !

described in 2.1.1 can be trivially attacked: The attacker intercepts both the server- and

client-supplied components of the key and constructs the RC4 key that can be used to

decrypt the whole encrypted data stream. This approach is implemented in the

OracleFormsTester Burp Suite extension accompanying this document.

This attack against the key exchange renders encryption useless because a passive

attacker can obtain the key. If no other protections (like TLS or IPsec) are implemented

the security of communication is equivalent to plain HTTP.

2.2.3. Active Network Attacks

During an active network attack the attacker can intercept and modify any traffic

passing between the Oracle Forms server and client. One of the countermeasures against

these attacks is mutual authentication that prevents the attacker from acting as a man in

the middle. Oracle Forms doesn’t implement any authentication scheme at the network

level, the only requirement for a man-in-the-middle attack is the knowledge of the

protocol of the framework.

Another important countermeasure against active attacks is integrity checking that

is especially important when using stream ciphers like RC4 to avoid bit-flipping attacks

(David LeBlank, 2002). In a bit-flipping attack the attacker takes advantage of the

general structure of stream ciphers to modify bits in the decrypted plaintext by flipping

bits at the same position in the ciphertext. Since Oracle Forms doesn’t implement

integrity protection bit-flipping attacks can be trivially mounted. For the bit-flipping to be

meaningful the attacker must predict the position of the data to be corrupted.

In case of Oracle Forms there is an obvious opportunity for exploitation during

the standard applet initialization phase. In this phase the client sends an Oracle

configuration string to the server. This string usually contains the name or IP address of

the Oracle server to connect to. The offset of the server location substring is predictable

because the format of the configuration string is known and it is always sent at the start of

the first client request.

The following screenshots show how an encrypted request was edited using Burp

Suite. The configuration string of the original request was:

Automated Security Testing of Oracle Forms Applications! 10
!

Author!Name,!email@address! ! !

server escapeParams=true module=tuto_forms.fmx

userid=SYSTEM/oracle@127.0.0.1/XE sso_userid=%20

sso_formsid=%25OID_FORMSID%25 sso_subDN= sso_usrDN= debug=no

host= port= buffer_records=no debug_messages=no

array=no obr=no query_only=no quiet=yes render=no record=

tracegroup= log= term=

The original configuration pointed to the Oracle database at 127.0.0.1. As a

demonstration the bits of 2nd and 3rd bytes of the IP address were flipped to make up the

“72” substring:

1.#Figure#Original#encrypted#request#containing#database#connection#information#

2.#Figure#Edited##encrypted#request#containing#database#connection#information#

After the edited request was forwarded to the server connection attempts to the

172.0.0.1 address were registered by the Wireshark network analyzer. Since this host

didn’t exist the connection timed out and the client reported an error. After the error was

dismissed the client displayed a login window containing the modified IP address.

Automated Security Testing of Oracle Forms Applications! 11
!

Author!Name,!email@address! ! !

3.#Figure#Results#of#bit@flipping#at#client#and#server#side#

This proof-of-concept attack demonstrates that the encryption scheme is

vulnerable to bit-flipping attacks independently from the strength of the key-exchange

protocol phase.

2.2.4. Insecure password handling

In section 2.2.3 the database user and the password were configured server side,

but the modified packet containing the same information was sent by the client. This

means that Oracle Forms sends the configured database credentials to its clients.

This creates a security weakness that allows unauthenticated attackers to obtain the

configured password. The credentials are sent to the client in response to a request similar

to the following:

GET

/forms/lservlet;jsessionid=sessionid?ifcmd=getinfo&ifhost=hostnam

e&ifip=192.168.1.1 HTTP/1.0

The response contains the credentials encoded with the DEFLATE algorithm

(Deutsch, 1996). The response body can be decoded using the zlib library (Akira, 2010):

Automated Security Testing of Oracle Forms Applications! 12
!

Author!Name,!email@address! ! !

python -c "import zlib,sys;print \

repr(zlib.decompress(sys.stdin.read()))" < creds.bin

Further research is required to assess if other configuration parameters sent by the

client can be used to conduct attacks.

2.2.5. Brute-force

If an attacker can intercept only a subset of encrypted HTTP messages (e.g. when

performing an ARP poisoning attack (Jeff King, 2010)) she can’t rely on the weak key

exchange scheme as the required key material is not necessarily included in the captured

packets.

Since the key size of the protocol is effectively 32-bits (see 2.1.1) brute-force

attacks against the captured ciphertext can be practical. As a proof of concept a primitive

Java program (OracleFormsBruteForce.java) was built that decrypts a given

ciphertext with every possible key and detects if the resulting plaintext is a valid Oracle

Forms Message. This program is suboptimal as it is written in a high level language, runs

only a single thread, decrypts the whole message every time, etc. Still, the program

performs around 180.000 tries per second on a dual core Intel Core i5-520M (2.4 GHz)

CPU. At this speed a valid key is found from the 32-bit key-space in 3.3 hours on

average.

The average attack speed could probably be reduced to minutes on average

hardware but further optimizations were not made as the approach has serious practical

limitations: The assumption that the attacker doesn’t intercept the communication from

the beginning implies that the attacker doesn’t know which part of the stream she is

intercepting. To measure the effect of this uncertainty a modified version of the brute-

force program was built that predicts parts of the keystream assuming that the intercepted

ciphertext begins with a known 3-byte header (see 2.1.2). RC4 works by generating a

pseudo-random byte stream (the keystream) that is XOR-ed with the bytes of the

plaintext. To predict part of the matching keystream the first 3 bytes of the ciphertext is

XOR-ed with the presumed plaintext header bytes. Then an n byte long keystream is

generated in which the program looks for the predicted byte triplet for every possible key.

It is assumed that the attacker knows which part of the cipher stream she intercepted with

Automated Security Testing of Oracle Forms Applications! 13
!

Author!Name,!email@address! ! !

n byte precision. If the program finds a match it tries to use the keystream from the

matching offset to decrypt the whole ciphertext. If the decryption results in a valid

protocol message the key (and the matching offset) is found. The following diagram

shows how the performance of brute-force search is impacted as n grows:

4.#Figure#Brute@force#performance#in#unsynchronized#state#

The diagram shows that loosing synchronization with the stream cipher has

serious impact on the performance of a brute-force attack. Such an attack may be feasible

if the average sessions are relatively short or if the attacker can obtain additional

information about the state of the cipher.

It’s worth noting that this is not just a limitation for the attacker: In case of

network problems legitimate Oracle Forms peers can easily lose sync.

2.3. Test Automation
Testing is a fundamental part of any software development process, that helps

eliminate a wide range of errors from simple usability issues to critical vulnerabilities.

Although manual testing can’t be avoided test automation is fundamental to maintain

large software projects. In terms of security it is crucial to be able to effectively run a

high number of test cases (like generic patterns of injection attacks) in a black-box

manner.

Automated Security Testing of Oracle Forms Applications! 14
!

Author!Name,!email@address! ! !

In the case of Oracle Forms this effort is hindered by several factors: The

application protocol is undocumented, the communication is encrypted and the testing

tools provided by the vendor are integrated strongly with its proprietary tools (Oracle

Corporation, 2009.).

The results of reverse engineering described in section 2.1 makes it possible to

create tools which can interact with Oracle Forms applications without having access to

the server-side components or source code. A Proof of Concept extension,

OracleFormsTester was built for Burp Suite Professional that demonstrates the practical

application of the revealed details and also the challenges of the automated testing.

2.3.1. Test software design

The main automated testing component of Burp Suite is the Scanner that works

by taking HTTP requests issued by the browser and replays them with modified content.

The modifications are based on a large set of rules which define several payloads to be

inserted as part of HTTP (or REST, etc.) parameters. To achieve similar result in case of

Oracle Forms the testing software has to:

1. Intercept the traffic of the Oracle Forms applet

2. Decrypt the intercepted request

3. Identify potential insertion points (Message parsing)

4. Insert payload (Message serialization)

5. Encrypt and resend the modified request

Sample traffic can be easily intercepted by setting the proxy server used by the

Java runtime to the address of an intercepting proxy (like Burp Suite). In the case of a

raw TCP channel the routing table of the client can be modified to run traffic through an

intercepting network node.

While both cryptographic operations and Message handling tasks may seem

challenging the Java technology allows easy code reuse: During normal operation the

client-side part of the Oracle Forms framework (frmall.jar) is sent to the client for

use as part of the applet. The downloaded archive contains all code that is required to

parse and create valid protocol messages. The archive can be saved and reused in custom

programs by simply adding it to the Java classpath.

Automated Security Testing of Oracle Forms Applications! 15
!

Author!Name,!email@address! ! !

2.3.2. Decryption and Encryption

Decryption and encryption is implemented in the EncryptedInputStream and

EncryptedOutputStream classes of the oracle.forms.net package. The classes are inherited

from “filter” stream classes (FilterInputStream, FilterOutputStream) which can serve as a

transformation layer for other basic streams (like data or byte streams). Since a standard

cipher is employed, independent implementations can also be used without modification.

The encryption key can be trivially derived from the intercepted traffic.

The following screenshots demonstrate successful decryption of Oracle Forms

Messages through the Message Editor Tab introduced by OracleFormsTester:

5.#Figure#Intercepted#request#(encrypted)#
!

6.#Figure#Decrypted#body#of#intercepted#request#
!

Both the HTTP protocol and the Message format are stateless: valid messages can

be constructed independently from each other. Encryption however requires the internal

states of the ciphers at client and server side to be synchronized. This means that issuing

new messages independently from the client makes the applet unable to communicate

with the server. Also, corrupted messages (like heartbeats) sent by the client can

Automated Security Testing of Oracle Forms Applications! 16
!

Author!Name,!email@address! ! !

desynchronize the testing tool. Both problems can be solved by shutting down the client

as the testing starts. A more advanced solution is to block the traffic of the client while

the tests run and then setting the internal state of the cipher appropriately via a debugger.

In case of OracleFormsTester every decrypted request body and the

corresponding cipher state are stored in a HashMap indexed by the hash of the encrypted

body. This way plaintext messages can be found for every intercepted ciphertext. The

recoded plaintext messages are also used to select all String properties as Scanner

insertion points. When the Scanner runs the Messages are deserialized (see section 2.3.3),

the insertion points are replaced with the upcoming payload then the Message is

serialized and encrypted again.

2.3.3. Message parsing and serialization

Message parsing and serialization are performed by the writeDetails() and

readDetails() methods of the Message class. These implementations can be easily reused,

but successful message parsing requires taking care of two important details. First, the

readDetails() method should be invoked with a valid String array as its second argument

to support String caching (see section 2.1.2). Second, when decrypting Messages the

EncryptedInputStream(InputStream, boolean) constructor should be used with the second

argument set to true to initialize deciphering objects. This is important because the single

argument constructor declares only a 7800 bytes long internal buffer for the stream while

the two argument version declares 8192 bytes. Since some initial protocol messages

usually exceed 7800 bytes they can’t be read in a single run with the smaller buffer.

Successful Message parsing can be confirmed in the debug output of the

OrcleFormsTester extension:

Oracle Forms Tester loaded
Found GDay!
Found GDay! f1dbf270
Found Mate! 00000390
RC4 Key: f239aedb00
[...]
Encrypted Request: 77d4f3cdc03b22d2beb9ed71
506fd22b5a9b50757516f1b341423f546127b524d4189c15afa244dabefe1e6d
Body: 12 byte(s)
Property 0: 137 Type: 9
--- Value: java.awt.Point[x=900,y=700]

Automated Security Testing of Oracle Forms Applications! 17
!

Author!Name,!email@address! ! !

Message OK
100006a089038402bcf0f001

2.4. Deployment Best Practices
The attacks presented in section 2.2 showed that despite the encryption the

security of the Oracle Forms protocol is nearly equivalent to a plain text channel. The

transferred data should be protected with standard technologies like TLS or IPsec.

Oracle Forms shouldn’t be configured with database access credentials since this

information is sent to the clients as described in section 2.2.4. The userid parameter

should be set empty in the formsweb.cfg configuration file (Oracle Corporation, 2006).

Database passwords of existing installations with similar configuration should be

considered compromised.

3. Conclusion
This paper gave detailed overview on the communication protocol of Oracle

Forms and presented tools and methods to support automated testing. Multiple attacks

were presented which prove that the protective features of the framework give a false

sense of security as they can be circumvented easily.

Although Oracle Forms is meant to be a tool for Rapid Application Development

(Oracle Corporation, 2009) it hinders testing – one of the most important steps of

development – considerably. While test automation is possible, complex tools must be

built to support Oracle Forms. This property doesn’t only affect the security of Oracle

Forms based applications but the general quality of them too. A symptom of this

inadequacy is that this research revealed fundamental security weaknesses which would

likely have been found and mitigated in time in case of a more open technology.

The presented results confirm the opinion that Oracle Forms is an obsolete

technology and applications should be replaced (Berg, 2013). Hopefully the provided

information will help assessing the quality of the live applications and migrating them to

more modern platforms. Further research is required to determine if the design of Oracle

Forms introduce security risks that may affect a wider range of applications.

Automated Security Testing of Oracle Forms Applications! 18
!

Author!Name,!email@address! ! !

References

Akira. (2010). Deflate command line tool. Retrieved from Stack Overflow:

http://stackoverflow.com/a/8326032

Berg, E. (2013., February 25.). The Oracle Forms Dilemma - part 1. Retrieved from

http://whywebsphere.com/2013/02/25/the-oracle-forms-dilemma-part-1/

David LeBlank, M. H. (2002). Writing Secure Code (2nd Edition) (Developer Best

Practices). Redmond: Microsoft Press.

Deutsch, L. P. (1996). DEFLATE Compressed Data Format Specification version 1.3.

Retrieved from https://tools.ietf.org/html/rfc1951

Girish Janardhanudu, K. v. (2005., September 26.). Build Security In. Retrieved from

White Box Testing: https://buildsecurityin.us-cert.gov/articles/best-

practices/white-box-testing/white-box-testing

IETF. (2008., August). The Transport Layer Security (TLS) Protocol Version 1.2.

Retrieved from http://people.csail.mit.edu/rivest/pubs/RS14.pdf

Imperva. (2014., October). Web Application Attack Report #5. Retrieved from

http://www.imperva.com/docs/HII_Web_Application_Attack_Report_Ed5.pdf

Java Decompilers Online. (2015.). Retrieved March 15., 2015., from Java Decompilers

Online: http://www.javadecompilers.com/

Jeff King, K. L. (2010). ARP Poisoning (Man-in-the-Middle) Attack and Mitigation

Techniques. Retrieved from

http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-6500-series-

switches/white_paper_c11_603839.pdf

Microsoft Corporation. (2009.). Get ready for plug-in free browsing. Retrieved from

https://msdn.microsoft.com/en-us/library/ie/hh968248%28v=vs.85%29.aspx

Mimoso, M. (2013.). Java's Loosing Security Legacy. Retrieved from Threat Post:

https://threatpost.com/javas-losing-security-legacy/102176

Nadhem AlFardan, D. J. (2013., August). On the Security of RC4 in TLS. 22nd USENIX

Security Symposium, Washington, D.C.

Oracle Corporation. (2000). Security Considerations. Retrieved from Oracle Forms

Server Release 6i: Deploying Forms Applications to the Web with Oracle Internet

Automated Security Testing of Oracle Forms Applications! 19
!

Author!Name,!email@address! ! !

Application Server:

http://docs.oracle.com/cd/A97338_01/doc/forms.6i/a83591/chap10.htm

Oracle Corporation. (2006.). Configuration Files. Forrás: Oracle Application Server

Forms Services Deployment Guide 10g Release 2 (10.1.2) :

https://docs.oracle.com/cd/B14099_19/web.1012/b14032/basics002.htm

Oracle Corporation. (2009, October). Frequently Asked Questions for Oracle Forms 11g.

Retrieved from http://www.oracle.com/technetwork/developer-

tools/forms/documentation/faq-2-130064.pdf

Oracle Corporation. (2009, June). Oracle Forms Services & Oracle Forms Developer

11g Technical Overview. Retrieved from

http://www.oracle.com/technetwork/developer-tools/forms/overview/technical-

overview-130127.pdf

Oracle Corporation. (2009.). Using the Oracle Forms Functional Test Module. Retrieved

from Oracle Application Testing Suite OpenScript User's Guide:

https://docs.oracle.com/cd/E25291_01/doc.900/e15488/opscrpt_using_offt_modul

e.htm

Oracle Corporation. (2012., March). Oracle Application Development Tools Statement of

Direction: Oracle Forms, Oracle Reports and Oracle Designer. Retrieved from

http://www.oracle.com/technetwork/issue-archive/2010/toolssod-3-129969.pdf

Oracle Corporation. (2014.). Oracle Application Development Framework. Retrieved

2015., from http://www.oracle.com/technetwork/developer-

tools/adf/overview/index.html

Oracle Corporation. (2015). Java Documentation. Forrás: Connection and Invocation

Details: https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/conninv.html

Oracle Forms. (n.d.). Retrieved 03 15, 2015, from

http://www.oracle.com/technetwork/developer-tools/forms/overview/index-

098877.html

OWASP. (2014.). Appendix A: Testing Tools. Forrás: OWASP Testing Guide v4:

https://www.owasp.org/index.php/Appendix_A:_Testing_Tools

Popov, A. (2015.). Prohibiting RC4 Cipher Suites. Forrás:

https://tools.ietf.org/html/rfc7465

Automated Security Testing of Oracle Forms Applications! 20
!

Author!Name,!email@address! ! !

PortSwigger Ltd. (n.d.). Burp Suite. Retrieved March 15., 2015., from Portswigger:

http://portswigger.net/burp/

Roland, G. (2009). Migrating Oracle Forms to Fusion: Myth or Magic Bullet? Retrieved

from http://www.oracle.com/technetwork/developer-

tools/forms/documentation/formsmigration-133693.pdf

Ron L. Rivest, J. S. (2014, October 27.). Spritz - a spongy RC4-like stream cipher and

hash function. Retrieved from http://people.csail.mit.edu/rivest/pubs/RS14.pdf

Schuh, J. (2013). Saying Goodbye to Our Old Friend NPAPI. Retrieved from Chromium

Blog: https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-

npapi.html

Automated Security Testing of Oracle Forms Applications! 21
!

Author!Name,!email@address! ! !

Appendix

Decompiled RC4 pseudo-code

Relevant methods decompiled from oracle.forms.net.EncryptedInputStream:
 public synchronized void setEncryptKey(byte abyte0[])

 {

 if(abyte0 == null || abyte0.length == 0 || abyte0.length

> 256)

 throw new RuntimeException();

 mSeedBuffer = new int[256];

 mI = mJ = 0;

 for(int i = 0; i < 256; i++)

 mSeedBuffer[i] = i;

 int l;

 int k = l = 0;

 for(int j = 0; j < 256; j++)

 {

 l = (l + (abyte0[k] & 0xff) + mSeedBuffer[j]) % 256;

 int i1 = mSeedBuffer[j];

 mSeedBuffer[j] = mSeedBuffer[l];

 mSeedBuffer[l] = i1;

 k = (k + 1) % abyte0.length;

 }

 }

 public synchronized int read()

 throws IOException

 {

 if(mPos == mLength)

 {

 fill();

 if(mPos == mLength)

Automated Security Testing of Oracle Forms Applications! 22
!

Author!Name,!email@address! ! !

 return -1;

 }

 return mBuf[mPos++] & 0xff;

 }

 public synchronized int read(byte abyte0[], int i, int j)

 throws IOException

 {

 if(mPos + j > mLength)

 {

 fill();

 if(mPos >= mLength)

 return -1;

 }

 int k = mLength - mPos;

 k = k >= j ? j : k;

 System.arraycopy(mBuf, mPos, abyte0, i, k);

 mPos += k;

 return k;

 }

 private void fill()

 throws IOException

 {

 int i;

 if(mPos == mLength)

 {

 mLength = 0;

 i = 0;

 } else

 {

 mLength = mLength - mPos;

 System.arraycopy(mBuf, mPos, mBuf, 0, mLength);

 i = mLength;

 }

 int j = mIstream.read(mBuf, i, mBuf.length - i);

Automated Security Testing of Oracle Forms Applications! 23
!

Author!Name,!email@address! ! !

 if(j > 0)

 {

 mLength += j;

 mBytesCount += j;

 }

 mPos = 0;

 int ai[] = mSeedBuffer;

 if(ai != null)

 {

 int k = mI;

 int l = mJ;

 for(int i1 = i; i1 < mLength; i1++)

 {

 k = (k + 1) % 256;

 l = (ai[k] + l) % 256;

 int j1 = ai[k];

 ai[k] = ai[l];

 ai[l] = j1;

 mBuf[i1] ^= ai[(ai[k] + j1) % 256];

 }

 mI = k;

 mJ = l;

 }

 }

