GIAC

CERTIFICATIONS

Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?

Check out the list of upcoming events offering

"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

AJAX versus WebSocket a comparison of
security implications

GIAC (GWAPT) Gold Certification

Author: Sven Thomassin, sven.thomassin@be.pwc.com

Advisor: Antonios Atlasis

Accepted: July 25t 2014

Abstract

Today, more and more web applications make use of asynchronous client-server
communication technologies like AJAX and WebSockets. They play an important role
in improving the user experience and decreasing delays during content loading. The
security implications of asynchronous client-server communication technologies
have been examined and discussed in the literature but a comparative study of AJAX
and WebSockets is lacking. This paper offers the community a comparison of the
security implications of each technology. We will examine AJAX and WebSockets
from a high-level viewpoint, before studying the specific AJAX and WebSocket
security implications. The paper provides a self-contained, in-depth, comparative
overview of AJAX and WebSocket security implications and is of particular value to
web application testers as it highlights important security implications which must
be examined.

Sven Thomassin, sven.thomassin@be.pwc.com

1. Introduction

Today’s web application content is loaded to the web browser by means of the
HyperText Transfer Protocol (HTTP). HTTP is a stateless Layer 7 protocol for
transferring data objects (e.g. HTML pages, JavaScript and CSS files and images) by
means of HTTP messages. Two types of HTTP messages exist, being requests sent by
the client and responses returned by the server. Prior to exchanging HTTP messages
a connection is set up with the server when a client requests data objects. This
connection can be reused to retrieve additional data objects. (IETF, 1999) (Wang,
Salim, & Moskovits, 2013)

In the early days of the Internet web application content was loaded synchronously,
which meant that the complete web page was reloaded upon each client request.
This paradigm shifted with Web 2.0. Web 2.0 brought applications with an
interactive and rich end-user experience to the browser (O'Reilly, 2005). This
enhanced user experience is made possible by web application techniques like AJAX
(Asynchronous JavaScript and XML) and WebSockets. Both techniques provide
means to asynchronously load web application content to the web browser. In
practice this means that only parts of the active web application have to be
refreshed instead of loading the complete web page.

This paper will focus on AJAX and HTML5 WebSockets and how they are used to
build web applications that support asynchronous communication. Other
techniques like WebRTC or streaming will not be discussed. In chapter 2 we will
elaborate on how AJAX and WebSockets can be implemented to support
asynchronous communication. Chapter 3 will cover the security implications
related to AJAX and WebSockets. In chapter 4 we will compare the security
implications of both technologies. Additionally, we will discuss the important
attention points which should be taken into account when using either AJAX or
WebSockets. In chapter 5 we will draw our conclusions.

Sven Thomassin, sven.thomassin@be.pwc.com

2. Asynchronous client-server communication

When surfing through a web application that relies on synchronous client-server
communication the user has to wait for data objects to be returned by the server
before the web page is completely visible. Figure 1 graphically demonstrates that
the user has to wait for the server’s response after each page request.

1. Regular request
Website < —

2. Regular response, including the whole
webpage

Figure 1 - Synchronous communication

Through asynchronous client-server communication the number of data exchanges
between the client and the server can be reduced by adding a layer between the
client and the server on the client side. In the following paragraphs we discuss AJAX
and WebSockets which allow the implementation of asynchronous communication
in practice.

21. AJAX

AJAX, or Asynchronous JavaScript and XML, is a way of combining standards to
exchange data between the client and the server (W3Cschools, 2014d). In an AJAX
application, a JavaScript based AJAX engine is placed between the client and the
server on the client side, as depicted in Figure 2 and Figure 3. The exchanged data is
typically serialized as JSON or XML to prevent the exchange of the webpage in its
entirety. The AJAX engine handles the data exchange and places the retrieved data in
the web application’s DOM. Furthermore, the AJAX engine can contain business logic
to decide whether each user interaction should result in a request to the server.

Figure 3Figure 2 depicts how asynchronous requests are handled which require an
interaction with the server to obtain data. (Garrett, 2005) (OpenAjax Alliance, 2014)

Sven Thomassin, sven.thomassin@be.pwc.com

Website

1. Asynchronous
request

6 Asynchronous
response

AJAX Engine 3. If data must be fetched from the server,

/\ C the AJAX initiates a request to the server
< 2
~

. 5. Asynchronous response, only including the 4 Pr o
2. The AJAX engine requested data . Processing request
decides that data must be and return data to the

fetched from the server client

Figure 2 - Asynchronous communication, the AJAX engine requests data from the server

Figure 3 depicts how asynchronous requests are handled which can be processed by
the client-side business logic instead of requesting server interaction to obtain data.

Website

1. Asynchronous
request

3. Asynchronous

response

AJAX Engine

1 C

2. The AJAX engine
returns the data which has
to be populated in the
web application.

Figure 3 - Asynchronous communication, the AJAX engine returns the data without server interaction

The JavaScript XMLHttpRequest object, or the ActiveXObject for older browsers, is
used to exchange data with the server. The open() and the send() methods are
respectively used to open a connection with the server and to send data to the
server. The data retrieved from the server can be obtained by the responseText or
responseXML property and will be placed in the DOM by the AJAX engine. (W3C
Schools, 2014a) (W3C Schools, 2014b) (W3C Schools, 2014c)

The solution described above does not foresee in a full duplex communication
channel, but relies on requests introduced by the end-user. To simulate this
behavior a technique called polling can be used. In this technique the AJAX engine
automates client-side requests to obtain information from the server in a near real-
time fashion. Long polling can be used to further decrease the time delay to obtain
data in real-time. In this case periodical requests are sent while the connection

Sven Thomassin, sven.thomassin@be.pwc.com

remains open until a server response is received or until the connection is timed
out. (Wang, Salim, & Moskovits, 2013)

2.2. WebSockets

The unscalable approach of polling, and long-polling, leads to unnecessary network
latency which can be prevented by using WebSockets. WebSockets offer a
bidirectional communication channel via one socket that allows the client and the
server to initiate data transfers. As such the burden on servers can be reduced
allowing them to support more concurrent connections. (Wang, Salim, & Moskovits,
2013) (IETF, 2011) (Kaazing Corporation, n.d.)

To better examine the security implications of using WebSockets we set up our own
local, RFC 6455 compliant, WebSocket echo server in an Ubuntu 12.10 virtual
machine. After some research we found a simple, working WebSocket server using
Python Tornado (Gaitatzis, 2013). Tornado is framework and asynchronous
networking library in Python and can be found on http://www.tornadoweb.org.
More information on how the WebSocket server was set up and configured can be
found in Appendix A.

2.2.1. WebSocket opening handshake

Our WebSocket server echoes each WebSocket request. To make use of this service,
the connection must be upgraded to a WebSocket connection. The first step in the
opening handshake is initiated by the client who sends an Upgrade header with its
request. Moreover, a Sec-WebSocket-Key header is sent with the request, so the
server can prove that it received a valid opening handshake and avoid accepting
connections from non-WebSocket clients.

GET /HTTP/1.1

Host: ***:8889

User-Agent: ***

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5

Sec-WebSocket-Version: 13

Origin: null

Sec-WebSocket-Key: EP21sUrYzIJxfVsNO6LVzA==

Connection: keep-alive, Upgrade

Upgrade: websocket

Hereafter the server responds with an informational header (101 Web Socket
Protocol Handshake) to open the Web Socket connection. The response contains,
besides the upgrade header, the Sec-WebSocket-Accept header which is the server
confirmation for initiating the WebSocket connection (IETF, 2011):

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: yi7RhLS933PPEbrKWadwmVBrm4M=

Sven Thomassin, sven.thomassin@be.pwc.com

Upon completion of the handshake all client-server communication is done over the
WebSocket protocol. The WebSocket requests and responses are initiated and
processed by JavaScript. Besides the Sec-WebSocket-Key and Sec-WebSocket-Accept
headers, RFC 6455 registers 3 other new HTTP header fields for WebSockets (IETF,
2011):

* The Sec-WebSocket-Extensions header is used to agree on protocol
extensions.

* The Sec-WebSocket-Protocol is used to define the sub protocol of the
connection.

* The Sec-WebSocket-Version is an indication of the protocol version of the
connection, allowing the server to correctly interpret the opening handshake.

3. AJAX and WebSocket security implications

3.1. AJAX specific security implications

As in a normal web application, AJAX communication can be intercepted by means
of an intercepting proxy. Hence, AJAX is vulnerable to the attack vectors described
below. Additionally, one must not only review the intercepted traffic but should also
review the source code of AJAX applications to, for example, reveal hidden URL'’s to
which AJAX calls can be made.

3.1.1. Encryption

The open() method of the XMLHttpRequest object requires the definition of the URL
that has to be visited. Since AJAX traffic is sent over HTTP, all communication
between the client and the server should be encrypted by using HTTPS. If not, all
data exchanged between the client and the server could be intercepted and
potentially altered mid-air.

Based solely on the URL of the website, one cannot infer whether the same URI
scheme is used for the AJAX calls. Suppose that:

* A website is served over HTTPS, whilst AJAX calls are made over HTTP.
* Cookies are set without a secure flag and are used to track users.

As a consequence cookies could be leaked once an AJAX call is made, facilitating a
malicious user’s job in hijacking legitimate users’ sessions. Hence, a tester should
verify whether HTTP or HTTPS is used for AJAX calls, for example by means of an
intercepting proxy or by checking the JavaScript source.

3.1.2. HTTP Request Method used
The open() method requires the HTTP Request method to be used. Generally

speaking, the GET or POST methods are used for making requests. The POST method
is more resilient from a security viewpoint, since parameters that are sent along a

Sven Thomassin, sven.thomassin@be.pwc.com

GET request can be read by all intermediate devices between the client and the
server. Moreover, the URL, including the parameters, is stored in the browser
history.

3.1.3. Input validation and output encoding

User input cannot be trusted, thus it is important to properly validate it prior to
processing. Otherwise it would be possible to introduce an XSS vulnerability in the
application by injecting JSON pairs or injecting HTML or XML elements in the
exchanged data. In the latter a malicious user could inject multiple nested XML
entities to create an XML bomb to overload the XML parser on the client or server
side (SoapUI, 2014). As a consequence he could impact the availability of the
application.

An XSS vulnerability could also be introduced in case output encoding is forgotten.
Typically, in an AJAX based application, the application is populated by means of the
innerHtml method, which in contrast to the innerText, does not encode dangerous
characters e.g. <, >, “, ‘, " and = (OWASP, 2013). Hence the server should HTML
encode these characters when returning them to the browser to prevent the
execution of scripts.

3.1.4. Client side business logic

Since user input cannot be trusted it is good practice to handle all business logic
server side, with the client side assisting in performing parts of the business logic to
avoid unnecessary client-server communications. Placing too much reliance in
client-side business logic could undermine the application security model. As a
malicious user could investigate the AJAX engine to understand and circumvent the
client side business logic.

3.1.5. Origin related security concepts

The same origin policy (SOP) prevents that scripts from different origins can access
each other’s content, which makes it difficult to perform cross-origin
communication. There are some workarounds to the SOP restrictions, like Cross-
Origin Resource Sharing (CORS) or the usage of <script> elements since the SOP
does not apply for this element. Hence, it is important to consider whether third
party scripts can be included in the application as well as to investigate which cross-
origin requests these scripts make. (De Rijck, 2012)

When a request is made from within a certain origin, the HTTP Origin header is sent
with the request. The server can respond with different Access-Control-Allow-
headers, like the Access-Control-Allow-Origin or the Access-Control-Allow-Methods
header. When testing AJAX-based web applications, the usage of these response
headers should be verified by intercepting client-server communication with an
intercepting proxy.

Sven Thomassin, sven.thomassin@be.pwc.com

Specifically, the value of the Access-Control-Allow-Origin should be verified. It is
good practice to specify a set of domains, instead of using null or the asterisk as
wildcard, because these will grant access to any origin. In case a request is made
from a disallowed origin, the server should respond with no CORS headers in the
response. Otherwise valuable information like allowed origins can be leaked.

CORS is no watertight security measure for servers to prevent unintended access to
server resources as it only limits the origins that could access the server resource.
Servers should not protect confidential information by means of CORS headers as
origin headers can easily be altered. A malicious user could for example use a proxy
to intercept the HTTP request headers and modify them prior to forwarding the
request to the server.

3.1.6. Authentication & authorization

As AJAX communication happens over HTTP, the server-side application can take
care of synchronous and asynchronous client requests. As such, user access control
can be handled by the application. Thus, the same authentication module can be
used to check whether a user is authenticated when receiving a synchronous or
asynchronous request. Hence, it is important that the session information is sent
along each request.

Upon authentication, the server-side application must ensure whether the
authenticated user is authorized to access the requested information (OWASP,
2014). Hence, during a penetration test the authorization module should be
investigated to understand who can access the requested data objects. It is
important to note that vertical and horizontal privilege escalations should be tested
when different authorization levels are used.

3.2. WebSocket specific security implications

One must keep in mind that a WebSocket connection provides a bidirectional
communication channel via one socket. As such scalability issues, like the C10k
problem, should be addressed on server level (Kegel, 2014). As the above statement
concerns more server configuration it also implies that DoS testing against a
WebSocket Server should be taken into consideration when performing a web
application test. Further examination of the C10k problem is out of scope of this

paper.
3.2.1. Encryption
Asynchronous client-server communication that contains sensitive data must be

encrypted by means of the wss:// URI scheme instead of the regular ws:// URI
scheme (ethicalhack3r, 2013).

Since cookies are exchanged with the server during the WebSocket opening
handshake, similar security implications as described in paragraph 3.1.1 can be
applied to WebSockets.

Sven Thomassin, sven.thomassin@be.pwc.com

3.2.2. Input validation and output encoding

The same security implications apply for WebSockets as discussed in the input
validation and output encoding section of the AJAX specific security implications -
user input cannot be trusted. Hence user input should be validated prior to being
processed. Similarly, the server-side application must ensure that user input is
properly encoded prior to populating the web application.

3.2.3. Client side business logic

As in AJAX application, the client side business logic should be reduced to prevent
malicious users investigating the JavaScript source code which handles the client-
server communication.

3.2.4. Origin related security concepts

A malicious user could initiate a Denial-of-Service attack against the WebSocket
server when all connections are accepted, (Shema, Shekyan, & Toukharian, 2012).
For example, suppose that a website is vulnerable to stored cross-site scripting. A
malicious user could exploit this vulnerability to setup a WebSocket connection
when a legitimate user visits the vulnerable page. In case multiple users visit the
vulnerable page the availability of the WebSocket server could be negatively
influenced as all users will set up a WebSocket connection due to the Stored XSS.

The use of the origin header can make it difficult to accomplish such an attack. The
origin header is sent along with the WebSocket upgrade request. Before completing
the handshake, the server could check the origin header to decide whether to accept
or refuse WebSocket connections. (Wang, Salim, & Moskovits, 2013)

The origin header, however, should not be relied on since this header can easily be
spoofed by a browser plugin or an intercepting proxy, or even natively in the source
code of non-browser applications. A more effective measure against Denial-of-
Service attacks would be authenticating application users, as well checking whether
they are authorized to access the WebSocket service.

3.2.5. Authentication & authorization

Data leakage via the WebSocket service should be prevented by serving the data
over an encrypted channel after the user is authenticated. RFC 6455 states that the
WebSocket protocol does not prescribe a particular authentication mechanism to
identify or authenticate users (IETF, 2011). As such, client authentication could take
place at the application level prior to or even after the application layer protocol
upgrade. For example by means of a cookie based authentication mechanism or by
means of a protocol, like XMPP, that allows to authenticate users upon the
WebSocket upgrade (XMPP.org, 2009). The examination of XMPP is out of scope of
this paper, but we will describe the cookie based authentication mechanism in more
detail below.

Sven Thomassin, sven.thomassin@be.pwc.com

10

Before upgrading to the WebSocket protocol, authentication could take place by
means of, for example, a form based authentication mechanism that prompts for the
client’s credentials. A session cookie will be set upon a successful authentication
attempt by the client. This session cookie is sent with all subsequent requests, to the
website including the request to upgrade to WebSockets. During the opening
handshake, the WebSocket server should check whether this cookie is linked to an
authenticated user.

This approach places the security controls concerning authentication and cookie
management back in the web application. The authentication mechanism must
ensure that user credentials are sent over an encrypted channel, strong password
requirements are enforced and user account information is not leaked. Additionally,
the authentication mechanism must be protected against brute forcing attacks,
while the cookie management implementation must ensure that a session cookie is
set upon successful authentication. This means that the appropriate flags, i.e.
HttpOnly and secure, must be set accordingly. The session cookie value must have
high entropy to avoid that a malicious user would start guessing the cookie values in
an automated fashion. The latter can for example be tested by means of the Burp
Sequencer module.

As described in the AJAX specific security implications, the likelihood of performing
a vertical or horizontal privilege escalation upon authentication should be verified
as well.

3.2.6. WebSocket tunneling

TCP services, like a database or a remote desktop connection, can be tunnelled over
WebSocket, refer to tools such as sstur/node-websocket-tunnel and wstunnel. A
malicious user could obtain access to these tunnelled services, in case of an XSS
attack (Heroku dev center, 2014), and mask the exfiltration of information over a
WebSocket connection. Hence, during a penetration test one must ensure that
unwanted tunnelling is not possible, while verifying which services could be
tunnelled over the WebSocket connection. We will not further elaborate on this
security implication as this is dependent on the WebSocket server used and requires
an in-depth research in this specific domain.

Sven Thomassin, sven.thomassin@be.pwc.com

11

4. Ajax & WebSocket Security: A comparison

The table below provides an overview of potential security vulnerabilities related to
AJAX and WebSocket.

AJAX

WebSocket

Encryption

HTTP Request
Methods used

Input
validation and
output
encoding

Client side
business logic

Origin related
security
concepts

Authentication
&
authorization

WebSocket
tunneling

The client server
communication should go over
an encrypted channel such as
HTTPS.

The preferred method is POST,
especially in case parameters
are sent with the request.

The wss:// URI scheme has to
be used to send the client-
server communication over an
encrypted channel

Not applicable to WebSockets
as the WebSocket protocol does
not rely on request methods.

User input should be validated before being processed. This user
input should be sanitized or encoded to named entities before
being returned by server. Hence, one must ensure that characters
like <, >, “, %, " and = are not allowed in user input. But if this is not
possible they should be properly encoded when returned by the
server.

The JavaScript source code should be investigated to understand

the application business logic on the client side.

AJAX calls should only be
allowed from a preset list of
origins. Moreover, the allowed
origins should not be leaked.

If relevant, one must ensure
that AJAX calls can only be
answered when the user is
authenticated and has the
required authorization level.

This technique does not apply
to AJAX

The WebSocket service should
only be served to a set of
allowed origins. Moreover, the
allowed origins should not be
leaked.

It is important to check
whether authentication and
authorization verifications are
made during the opening
handshake.

Verify whether the WebSocket
server allows tunneling of TCP
services.

AJAX and WebSocket implementations are only as safe as the web application that
implements their features. Suppose that a web application is prone to a cross-site
scripting attack, while the AJAX or WebSocket features are securely implemented. A
malicious user could, for example, abuse this XSS vulnerability to alter the

Sven Thomassin, sven.thomassin@be.pwc.com

12

application’s behavior to undermine the encryption used or even bypass the
implemented access controls.

In general, similar security implications can be drawn for AJAX and WebSockets.
Both require the use of input validation and output encoding. While the former
ensures user input is not trusted, the latter mitigates any damage otherwise caused
by returning malicious user input to a client. Client-side business logic implications
are also similar for both technologies. AJAX and WebSockets rely heavily on client-
side business logic, requiring an analysis of the JavaScript source code to verify
which business logic controls are performed on the client-side and which on the
server-side. Furthermore, both AJAX and WebSockets implementations should
verify the request origin to ensure that their features are only served to a set of
allowed origins.

However, the security implications for each technology differ when it comes to
encryption. In both cases, encryption measures should be used to avoid data leakage
in transit. While AJAX must use the HTTPS URI scheme, WebSockets must use the
wss:// URI scheme. The configuration of access controls also differs. For AJAX,
access checks can be performed for each request, whereas for WebSockets they can
either be performed during the opening handshake or in-transit with e.g. XMPP.

The security implications are different when it comes to HTTP request methods and
service tunneling. The former is only relevant for AJAX while the latter only for
WebSockets.

Sven Thomassin, sven.thomassin@be.pwc.com

13

5. Conclusion

In this paper we discussed how asynchronous client-server communication differs
from regular communication methods. We further elaborated how asynchronous
communication is implemented in practice by means of AJAX and WebSockets and
how the two differ from each other from an implementation and a security
viewpoint.

In essence we can conclude that the security implications that are present in classic
web applications can be extrapolated to websites using AJAX and WebSocket
features. Specifically encryption, input validation and output encoding, client
business logic vulnerabilities and authentication and authorization issues are
relevant security implications. Additionally, the importance of origin related
security implications may not be forgotten, as these could help to prevent that AJAX
calls and WebSocket connections are made by unwanted origins. As CORS will not
protect these features from unauthorized access, the application should rely instead
on the authentication and authorization controls in place.

Security implications related to the HTTP Request Methods are only relevant for
AJAX based applications. Specifically, data sent via a GET request will be leaked to
intermediate devices between the client and the server. WebSockets adds another
security implication namely WebSocket tunneling. A malicious user could exploit
this feature to exfiltrate information over WebSocket connections.

During a web application penetration test one must ensure that the web application
using AJAX and WebSockets is not prone to classic vulnerabilities such as for those
stated in the OWASP Top 10. Otherwise secure AJAX and WebSocket
implementations may still be vulnerable via the website using these features.

Sven Thomassin, sven.thomassin@be.pwc.com

14

6. References
De Rijck, P. (2012). HTMLS5 Security. Leuven.

ethicalhack3r. (2013, August 30). Security Testing HTML5 WebSockets.
Retrieved June 23, 2014, from ethicalhack3r:
http://www.ethicalhack3r.co.uk/security-testing-html5-websockets

Gaitatzis, T. (2013, September 19). WebSocket server with Python Tornado.
Retrieved May 29, 2014, from Tony Gaitatzis:
http://tonygaitatzis.tumblr.com/post/61729708977 /websocket-server-with-
python-tornado

Garrett, J.J. (2005, February 18). Ajax: A New Approach to Web Applications.
Retrieved February 20, 2014, from Adavaptive Path:
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/

Heroku dev center. (2014, April 21). WebSocket Security.
Retrieved June 23, 2014, from Heroku dev center:
https://devcenter.heroku.com/articles/websocket-security

IETF. (1999, June). RFC 2616 - Hypertext Transfer Protocol -- HTTP/1.1.
Retrieved Febuari 21, 2014, from IETF: https://tools.ietf.org/html/rfc2616

IETF. (2011, December). RFC 6455 - The WebSocket Protocol.
Retrieved February 21, 2014, from IETF: https://tools.ietf.org/html/rfc6455

Kaazing Corporation. (n.d.). About HTML5 WebSockets.
Retrieved May 2, 2014, from Websocket.org:
http://www.websocket.org/aboutwebsocket.html

Kegel, D. (2014, February 2). The C10K problem.
Retrieved May 28, 2014, from Dan Kegel's Web Hostel:
http://www.kegel.com/c10k.html

OpenAjax Alliance. (2014, March 22). Introducing Ajax and OpenAjax.
Retrieved March 22, 2014, from OpenAjax Alliance:
http://www.openajax.org/whitepapers/Introducing%20Ajax%20and%200penAja

x.php

O'Reilly, T. (2005, September 30). What Is Web 2.0.
Retrieved March 11, 2014, from O'Reilly Media:
http://oreilly.com/pub/a/web2/archive/what-is-web-20.html?page=1

Sven Thomassin, sven.thomassin@be.pwc.com

15

OWASP. (2013, January 22). OWASP AJAX Security Guidelines.
Retrieved June 25, 2014, from OWASP:
https://www.owasp.org/index.php/OWASP_AJAX_Security_Guidelines

OWASP. (2014, April 4). HTML5 Security Cheat Sheet.
Retrieved June 23, 2014, from OWASP:
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet

Shema, M., Shekyan, S., & Toukharian, V. (2012). Hacking with WebSockets.
Retrieved July 15, 2014, from http://media.blackhat.com/bh-us-

12 /Briefings/Shekyan/BH_US_12_Shekyan_Toukharian_Hacking Websocket_Slides.
pdf

SoapUI. (2014). XML Bomb. Retrieved July 15, 2014, from SoapUI:
http://www.soapui.org/Security /xml-bomb.html

W3C Schools. (2014a). AJAX - Create an XMLHttpRequest Object.
Retrieved June 23, 2014, from w3cschools.com:
http://www.w3schools.com/ajax/ajax_xmlhttprequest_create.asp

W3C Schools. (2014b). AJAX - Send a Request To a Server.
Retrieved June 23, 2014, from w3cschools.com:
http://www.w3schools.com/ajax/ajax_xmlhttprequest_send.asp

W3C Schools. (2014c). AJAX - Server Response.
Retrieved June 23, 2014, from w3cschools.com:
http://www.w3schools.com/ajax/ajax_xmlhttprequest_response.asp

W3Cschools. (2014d). Ajax Tutorial. Retrieved May 27, 2014, from w3cschools:
http://www.w3schools.com/ajax/default.ASP

Wang, V., Salim, F., & Moskovits, P. (2013). The Definitive Guide to HTML5 WebSocket.
Apress.

XMPP.org. (2009, September 25). Simple Authentication and Security Layer.
Retrieved June 2, 2014, from XMPP Standards Foundation:
http://xmpp.org/protocols/urn:ietf:params:xml:ns:xmpp-sasl/

Sven Thomassin, sven.thomassin@be.pwc.com

16

Appendix A. Setting up and configuring a simple
WebSocket echo server

We configured the WebSocket server and client be following these steps:

Step 1. Install Tornado library: $ easy_install tornado

Step 2. We slightly modified the WebSocket server Python script to be
more verbose.

Step 3. Run the WebSocket server

Step 4. Create a client side page to test the WebSocket echo server. This
page provides functionality to open a WebSocket connection, send a
message and close the connection. It provides an input field to send
your text to the server and an output field which contains the
server response.

Step 5. Browse to client.html to test the WebSocket echo server

We used, and slightly modified, the code of Tony Gaitatzis for our WebSocket echo
server (Gaitatzis, 2013):

#!/usr/bin/python
import tornado.web
import tornado.websocket
import tornado.ioloop

This is our WebSocketHandler - it handles the messages
from the tornado server
class WebSocketHandler(tornado.websocket. WebSocketHandler):
the client connected
def open(self):
print "New client connected"
self.write_message("You are connected")

the client sent the message

def on_message(self, message):
print(message)
self.write_message(message)

client disconnected
def on_close(self):
print "Client disconnected"”

start a new WebSocket Application

use "/" as the root, and the

WebSocketHandler as our handler

application = tornado.web.Application(][
(r"/", WebSocketHandler),

D

start the tornado server on port 8889

if _name__ =="_main_":
application.listen(8889)
tornado.ioloop.l0Loop.instance().start()

Sven Thomassin, sven.thomassin@be.pwc.com

17

The image below depicts the client and server side user interface.

| () WebSocket Test g
€ (@ fitesroot/sANS/client.htmt v @ [Cvitgetblement@] LI @} &NoProxyv # v @

ho &ervelripy

DISCONNECTED

Sven Thomassin, sven.thomassin@be.pwc.com

© 2014 The SANS Institute Author retains full rights.

