
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting
Misconfigurations

GIAC (GWAPT) Gold Certification

Author: Jamy Casteel, jamycasteel@gmail.com
Advisor: Tanya Baccam

Accepted: June 10, 2021

Abstract

Content Security Policy (CSP) is designed to help mitigate content injection attacks such
as XSS. While it can be helpful as a part of a defense-in-depth strategy,
misconfigurations may be bypassed, especially when used as a sole defensive
mechanism. Content Security Policy configurations can be very complex, leaving gaps in
coverage when utilizing older or larger web applications. Bypassing Content Security
Policy misconfigurations can often be trivial in a complex application. This research
analyzes how CSP works as well as bypass techniques and methodologies to help exploit
policy misconfigurations.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

2

	

Author	Name,	email@addressgmail.com	 	 	

1. Introduction
Attacks against web applications are becoming more common. The 2020 Data

Breach Investigation Report (Verizon) shows that 43 percent of breaches were linked to

web applications. One possible cause could be the increased complexity of modern web

applications. Complexity increases security risks, which leads to successful attacks.

These security risks to web applications are tracked by a project called Open Web

Application Security Project (OWASP), which has tracked the Top 10 security risks since

2003. One of the most notorious security risks is cross-site scripting, which is commonly

known as XSS. XSS, a type of content injection attack, has been in the OWASP Top 10

since the inception of the list ("OWASP/Top10," 2019).

Content injection attacks allow an attacker to insert content into a victim’s

website. This content is often malicious in nature and impacts visitors to the site. In the

case of XSS, an attacker uses a web application to execute malicious scripts on an end

user’s browser. The user’s browser executes the script since it came from a trusted

source—the victim’s website. The malicious scripts will be trusted by the user’s browser

and sensitive information, such as session tokens and cookies, can be accessed by the

attacker (OWASP, n.d.).

 Often the term ‘bypass’ is used when discussing circumventing a certain

technology. Usually when ‘CSP Bypass’ is referenced, the issues stem from the

configuration of the CSP on the web application. These configurations can be complex,

and complexity is often the enemy of security. To bypass a defensive solution

successfully, a deeper understanding of the technology is necessary.

2. Content Security Policy

Content Security Policy (CSP) was introduced as a countermeasure to protect

against content injection attacks. The CSP specification lays out a mechanism that

developers of web applications can use to control the resources that a particular page can

load or execute (IETF, 2016). While CSP can be a helpful defensive mechanism, it

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

3

	

Author	Name,	email@addressgmail.com	 	 	

should not be the sole source of defense. Any singular source of protection may be

vulnerable to bypass; CSP is no exception.

2.1. History of CSP
The security community first discussed the concepts behind CSP in the 2010s.

The first experimental implementations worked with Firefox and Chrome browsers,

utilizing the ‘X-Content-Security-Policy’ and ‘X-Webkit-CSP’ headers ("Content

security policy 1.0," 2012). The first implementation eventually led to further

development of the standard, culminating in the release of ‘Content Security Policy Level

2’ in 2016. CSP Level 2 is the current working standard as Level 3 is still a working draft

at the time of this writing. The ‘X-*’ CSP headers are now deprecated and should not be

used. The current standard is the header of ‘Content-Security-Policy.’

2.2. CSP Directives and Usage Information
The CSP can be delivered via two methods: the ‘Content-Security-Policy’ header

field or the HTML meta element. Although both methods are allowed, placing the CSP in

the HTTP response header is the preferred approach ("Content security policy level 2,"

2016). A proper CSP consists of the header followed by the policy. The policy consists of

one or more directives, with multiple directives separated by a semicolon. Directives are

used to dictate which sources are allowed by the user’s web browser. Figure 1 shows an

example of a simple CSP with a single directive in the response header.

Figure 1: Content Security Policy example

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

4

	

Author	Name,	email@addressgmail.com	 	 	

 CSP uses several directives to allow the control of different media types.

Directives are listed in a ‘name’ and ‘value’ pair. For instance, the ‘script-src’ directive in

Figure 1 has a value of ‘self’, which only allows scripts from the host application’s origin

to load.

CSP Level 3 lists several directives broken down into four categories: fetch,

document, navigation, and reporting. Fetch directives are used to control the locations

from which certain types of resources are loaded ("Content security policy level 3,"

2021). They are great avenues for bypass attacks via the direct loading of resources, such

as scripts or malicious media, into a vulnerable application. As of this writing, there are a

total of 17 fetch directives. Figure 2 shows a sample list of some popular fetch directive

names, along with a brief description of their purpose.

Directive Name Description

connect-src Limits the URLs which can be loaded using script interfaces

default-src Provides a fallback value for other fetch directives

font-src Limits URLs from where font resources may be loaded

frame-src Limits URLs that may be loaded into nesting browsing contexts

img-src Limits URLs from where image resources may be loaded

media-src Limits URLs from which audio, video, or other media may be loaded

object-src Limits URLs from which plugins may be loaded

script-src Limits location from where scripts may be executed

Figure 2: Sample of CSP Directive names ("Content security policy level 3," 2021)

Many values for directives consist of source lists, which are a set of strings that

identify the content available to be loaded and executed ("Content security policy level

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

5

	

Author	Name,	email@addressgmail.com	 	 	

3," 2021). Many CSPs found on current websites use the example values below. Figure 3

shows allowed directive values that are known as ‘source lists.'

Directive Source Description

‘none’ Matches nothing

‘self’ Matches the current URL’s origin

‘unsafe-inline’ Allows inline content (such as javascript and script elements)

‘unsafe-eval’ Allows the use of eval() and other methods to create code from strings

data Allows loading of resources via data schemes like Base64 encoded

images.

Serialized URLs Example: (https://example.com/script.js) will match a specific file

Example: (https://example.com) matches everything on that domain

Schemes Example: (https:) matches any resource with that scheme

Hosts Example: (example.com) will match any resource on that host

Example: (*.example.com) matches any resource on subdomains for

the listed host.

Figure 3: Sample of CSP Directive Values ("Content security policy level 3," 2021)

2.3. CSP Implementation and Usage
Security researcher Scott Helme’s project, ‘Crawler.Ninja’ (n.d.), provides a

historical security analysis of the top 1 million sites dating back to 2015. The site is

updated frequently, with new and downloadable information. Helme (n.d.) also posts

analysis on his blog, located at https://scotthelme.co.uk/, approximately every six months.

The latest update on Helme’s blog shows that CSP usage is up to almost 6 percent of the

top 1 million sites as of March 2020. Figure 4 shows the CSP implementation data from

Helme’s updates about the top 1 million sites from 2015 through 2020.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

6

	

Author	Name,	email@addressgmail.com	 	 	

Date Sites utilizing CSP Percentage of Top 1 Million

August 2015 1,365 sites 0.1476 Percent

February 2016 2,764 sites 0.2942 Percent

August 2016 4,139 sites 0.4410 Percent

February 2017 11,010 sites 1.1736 Percent

August 2017 17,638 sites 1.9607 percent

February 2018 23,670 sites 2.4848 percent

August 2018 33,153 sites 3.51 percent

February 2019 40,985 sites 4.3360 percent

September 2019 45,031 sites 5.1559 percent

March 2020 51,986 sites 5.9938 percent

Figure 4: CSP Implementation on the internet (Scott Helme, n.d.)

3. CSP In Action
Testing for CSP misconfigurations requires a functioning web application with

parameters vulnerable to XSS that can also be set up to reflect CSP headers in responses

to the client. DVWA, available at https://github.com/digininja/DVWA, was used for

testing web application security, including options for testing common CSP

misconfigurations ("Digininja/DVWA," 2021).

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

7

	

Author	Name,	email@addressgmail.com	 	 	

3.1. Vulnerable Application
Using the ‘XSS (Reflected)’ functionality inside of DVWA, the application was

proven to be vulnerable to XSS. Figure 5 shows a request and partial response to a

vulnerable XSS request to the application.

Figure 5: Vulnerable XSS Request without CSP

The lack of the ‘Content-Security-Policy’ header in the response shows that CSP

is not in use in the application. Since the ‘name’ parameter is vulnerable to XSS, the

application responded with the payload, which was (1) since the following XSS payload

was used: <script>alert(1)</script>. Figure 6 shows the client-side application after the

vulnerable request is loaded.

	
Figure 6: Vulnerable XSS Request without CSP (client-side)

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

8

	

Author	Name,	email@addressgmail.com	 	 	

3.2. Vulnerable Application with Basic CSP
With a vulnerable parameter in the application identified, a basic CSP

configuration was then added to the application. After adding the CSP, the page was

refreshed and verified. Figure 7 shows the response after adding the CSP.

																								
Figure 7: Vulnerable Application with Basic CSP

	

	 The same payload, <script>alert(1)</script>, was used again in the application,

but this attempt at XSS was unsuccessful due to the implementation of a basic CSP.

Figure 8 shows the request and partial response to a vulnerable XSS request with a basic

CSP. Figure 9 shows the updated client-side application after the request with XSS has

loaded.

Figure 8: Vulnerable XSS Request with Basic CSP

	

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

9

	

Author	Name,	email@addressgmail.com	 	 	

Figure 9: Vulnerable XSS Request with Basic CSP (client-side)

Since the XSS payload did not fire it may lead a tester to think that the parameter

was not vulnerable to content injection. To verify, a user could view the browser’s web

console since it is an effective way of detecting if XSS payload was blocked by CSP.

Accessing the web console varies by browser. In Firefox version 89 the user would

simply open the ‘Application Open Menu’ and select ‘More Tools’, followed by ‘Web

Developer Tools’, and then finally the ‘Console’ tab. Figure 10 shows the results of

viewing the browser’s console after attempting the XSS vulnerability on a page with a

basic CSP.

	
Figure 10: Firefox Developer Console

	

CSP blocked this XSS attempt because the policy was configured to limit the

source for the execution of scripts, as displayed by the ‘script-src’ line in the console. The

message displayed in Figure 10 even states the directive that blocked the attempt. While

this specific scenario may be thwarted, other methods may be available.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

10

	

Author	Name,	email@addressgmail.com	 	 	

3.3. Bypassing CSP (Basic)
Understanding how CSP works can lead to the discovery of possible

misconfigurations to exploit. When looking for ways to bypass CSP, testers should start

by looking at all directives in use in the CSP—paying special attention at any directives

that are dangerous to use in a vulnerable application.

	

3.3.1 ‘unsafe’ and ‘data:’ Sources
Developers are warned not to use either ‘unsafe-inline’ or ‘data:’ as valid sources

in their CSP configurations ("Content security policy level 3," 2021). As the beginning of

their names imply, the ‘unsafe-inline’ and ‘unsafe-eval’ script sources are unsafe, acting

as potential gold mines for attackers. As Figure 3 listed, the ‘unsafe-inline’ source could

be utilized to execute javascript, while ‘unsafe-eval’ could be used to create codes from

strings. Figure 11 shows the basic CSP configuration from Figure 8 and adds the ‘unsafe-

inline’ source.

Figure 11: CSP using ‘unsafe-inline’

	

The CSP that did not contain ‘unsafe-inline’ was successfully blocked. The

addition of ‘unsafe-inline’ allows inline scripting, which permits the success of XSS

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

11

	

Author	Name,	email@addressgmail.com	 	 	

payloads on the vulnerable application. Figure 12 shows the client-side application after

the previously used payload; <script>alert(1)</script>.

Figure 12: Vulnerable XSS Request with ‘unsafe-inline’ in CSP (client-side)

The ‘unsafe-eval’ source could also be used for exploitation. Depending on how

the application handles these requests, a base64 encoded payload may be successful for

code execution. Figure 13 shows the basic CSP configuration with the addition of the

‘unsafe-eval’ and ‘data’ sources.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

12

	

Author	Name,	email@addressgmail.com	 	 	

Figure 13: CSP using ‘unsafe-eval’ and ‘data:’

The payload to trigger this XSS vulnerability would be a bit more complex since

‘unsafe-eval’ creates code from strings. The following working payload is used to trigger

XSS successfully in this instance:

<script src="data:;base64,YWxlcnQoMTMzNyk="></script>

The ‘data:’ source in the CSP allows the loading of data from different data

schemes; this particular payload utilizes base64 encoded data. The

‘YWxlcnQoMTMzNyk=’ value decodes to ‘alert(1337)’, which will fire the payload seen

in Figure 14.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

13

	

Author	Name,	email@addressgmail.com	 	 	

Figure 14: Vulnerable XSS Request with ‘unsafe-eval’ and ‘data:’ in CSP (client-side)

3.3.2 Wildcards (*) in CSP
Wildcards in directives can result in the bypassing of sources, which may execute

code on a vulnerable application. The asterisk (*) is used as a wildcard in the directive

value. Wildcards can exist for valid reasons in a CSP—one would be to allow the loading

of a script in the same location across multiple subdomains. An example of this would be

permitting “http://*.example.com/script.js” in the CSP. Figure 15 shows a CSP that is

vulnerable to XSS due to a wildcard in the ‘data:’ source.

Figure 15: CSP using a wildcard

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

14

	

Author	Name,	email@addressgmail.com	 	 	

 A simple script tag will not bypass the CSP since ‘unsafe-inline’ is not in use.

Trying a payload using the script tag, like <script>alert(1338)</script>, will not work

against the CSP in Figure 15. This payload will result in the Content-Security-Policy

error displayed in Figure 16 since inline scripting was not allowed.

Figure 16: CSP blocking ‘script’ tag

The ‘data’ directive allows the loading of resources via data schemes. Since a

wild card is in use with this directive it increases the attack surface by allowing code

execution. The following payload takes advantage of this misconfiguration and executes

the XSS shown in Figure 17:

 <script src=data:text/javascript,alert(1338)></script>

Figure 17: Vulnerable XSS Request with ‘data:’ and wildcard in CSP (client-side)

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

15

	

Author	Name,	email@addressgmail.com	 	 	

3.3.3 File Upload and ‘self’ in CSP
The potential for bypass exists even when a CSP appears to be configured

properly. Figure 18 shows a simple CSP that has no obvious misconfigurations.

	

Figure 18: CSP without obvious misconfigurations

 The CSP in Figure 18 does not allow inline scripting, external script sources, or

image sources. Whenever a CSP appears to be locked down, a tester should consider

looking at the functionality of the application itself. Since the ‘script-src’ directive has a

value of ‘self’ the application will only allow scripts served from the same URL scheme

and port number. While this limits the attack surface it does not eliminate the possibility

of a content injection attack. For instance, if the application allowed file upload it could

be used to upload a javascript file to the server. The URL scheme and port number would

be the same and the payload could then be executed.

 An example of this would be if the attacker was able to upload a file to the

application. In testing, a file named ‘UploadedScript.js’ with a javascript payload was

uploaded into the application’s ‘uploads’ folder. Attempting to load the script requires the

following payload to be entered into the application’s vulnerable parameter:

<script src=../../../../uploads/UploadedScript.js>

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

16

	

Author	Name,	email@addressgmail.com	 	 	

 Figure 19 shows the request and response, highlighting the payload and the CSP

response from the application. Figure 20 shows the client-side response, indicating the

execution of the payload inside of the ‘UploadedScript.js’ file.

Figure 19: Vulnerable XSS Request

 Figure 20: Vulnerable XSS Request with ‘self’ and File Upload (client-side)

3.4. Bypassing CSP (Advanced)
Not all bypass methods rely on misconfigurations. There have been times when

properly configured CSP configurations can lead to bypass opportunities. The next two

examples are taken from real-world findings and help to illustrate other items to check for

when testing for potential CSP bypass.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

17

	

Author	Name,	email@addressgmail.com	 	 	

3.4.1. Google Analytics
While more advanced attacks can still happen due to misconfiguration, a recent

discovery found an issue with the path matching functionality in CSP, leading to data

exfiltration. The path matching functionality allows specific resources to be allowed in

the policy, but unfortunately, query strings have no impact on matching ("Content

security policy level 2," 2016). This means that by permitting the

‘https://example.com/file’ URL in the content security policy, other URLs like

‘https://example.com/file?key=Value1’ and ‘https://example.com/file?key=Value2’

would also be allowed.

Amir Shaked (2020) from PerimeterX released a blog post providing detailed

information on how this attack works. PerimeterX performed a scan in March of 2020

that examined the top three million domains and discovered that 210,000 sites had CSP in

place. Roughly eight percent of sites using CSP allowed Google Analytics domains,

which makes a Google Analytics URL like ‘https://www.google-analytics.com’ a

promising way to bypass CSP (Shaked, 2020). PerimeterX created a short javascript code

to exfiltrate data inserted into a site allowing Google Analytics domains. The code is

shown in Figure 21.

Figure 21: PerimeterX JS code (Shaked, 2020).

This highlighted code in Figure 21 (Shaked, 2020) took advantage of the ‘tid’

parameter used to set the tag ID of the Google Analytics user. An attacker could simply

change the value of the ‘tid’ parameter to their tag ID and the ‘dh’ parameter to their

domain, and then use this in a vulnerable application for data exfiltration via the ‘dp’

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

18

	

Author	Name,	email@addressgmail.com	 	 	

parameter in code. The ‘tid’ parameter would be configured with the Google Analytics

ID of the attacker’s account. The code would then send the user’s username and

password through the ‘dp’ parameter to the attacker’s account.

Figure 22 displays the Google Analytics dashboard showing the successful attack.

The highlighted area displays the username and password passed through the ‘dp’

parameter. This is possible because CSP cannot currently utilize query strings for

enforcement of policy ("Content security policy level 2," 2016).

Figure 22: Attacker’s Google Analytics Dashboard (Shaked, 2020).

 This previous example specifically mentions the use of Google Analytics for data

exfiltration, but it would not be the only possible avenue of attack. Any allowed source

with suitable parameters could possibly be used for a content injection attack if the

parameter is vulnerable and there is a way to execute code or exfiltrate data.

3.4.2. CVE-2020-6519
CVE-2020-6519 is an example of a bypass that comes from a browser that

incorrectly handled CSP (NIST, 2021). This vulnerability affected all Chromium-based

browsers, which includes Chrome, Opera, and Edge, between Versions 73 and 83

(Weizman, 2020). The vulnerability was discovered when Weizman injected javascript

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

19

	

Author	Name,	email@addressgmail.com	 	 	

code via a ‘javascript:’ source in an iframe. This caused the browser to interpret the CSP

incorrectly and allowed the content injection payload. Figure 23 shows the payload that

brought about CVE-2020-6519.

Figure 23: CVE-2020-6519 CSP Bypass

This exploit could prove very damaging to any application that was vulnerable to

a content injection attack. Fortunately, it would not affect sites that utilized nonces, a

cryptographic number used only once, or hashes to allow resources in their CSP

configuration because these features add additional security functionality on the server-

side (Weizman, 2020).

4. Recommendations for Defenders
Allowing content via nonces was brought about with CSP Level 2. Nonces are

used as an allow-list for approved in-line scripts and script blocks (Mozilla, 2021).

Utilizing nonces in CSP configurations can be an easy way to allow content. Developers

would use a ‘<nonce>’ tag in script elements throughout the application. The CSP

configuration would allow the base64 encoded nonce value in the CSP configuration. The

unique nonce value in each response severely limits the potential success of an attacker

since it would be extremely difficult to guess the value in the response in the case that

injection was successful. An example of a nonce configuration used in CSP is shown in

Figure 24. While this example shows the simplicity of the concept, if the value is not

unique and random then CSP can easily be bypassed.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

20

	

Author	Name,	email@addressgmail.com	 	 	

	
Figure 24: CSP configuration utilizing a nonce value

CSP Level 2 also allows the implementation of hashes for script sources, which

means that the script would need to be rehashed and the CSP updated after each revision

of the script. This allows the server to be able to allow certain scripts for execution.

Hashes will allow only the exact script to run while a nonce will allow any script in the

same nonce block to run (Hunt, 2017).

Figure 2 displayed some of the most common directives used in CSP

configurations. When looking to implement CSP it is important to understand the

functionality of the application to understand which directives will be the most effective.

Directives such as ‘script-src’ and ‘img-src’ limit where scripts and images can be

executed, respectively. Each directive can be helpful, but there is a possibility of lacking

coverage when utilizing individual directives. The ‘default-src’ directive can be utilized

as a catch-all for all potential directive types.

Defenders should also look at the reporting component of CSP; the ‘Content-

Security-Policy-Report-Only’ header. This header allows developers to monitor policy

implementations but not enforce the effects ("Content security policy level 3," 2021). The

‘report-to’ directive can be defined to create a reporting group for violations. CSP

reporting is utilized to raise awareness of any potential bypasses to the configuration of

the CSP.

CSP configurations can be difficult, especially in older or larger sites. Fortunately,

some tools can be utilized to look at CSP configurations. One example would be CSP

Evaluator (n.d), which can be found at https://csp-evaluator.withgoogle.com. The user

can paste the URL in question or just the policy itself, then CSP Evaluator makes

recommendations based on the different versions of CSP. This tool can help find

potential misconfiguration bypass possibilities. Figure 25 shows an example of a simple

CSP tested in the tool.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

21

	

Author	Name,	email@addressgmail.com	 	 	

	
Figure	25:	CSP-Evaluator	testing	CSP	

Most importantly, defenders should prioritize verifying that applications perform

proper validation and encoding on the server-side to avert XSS vulnerabilities (OWASP,

n.d.). Proper validation and sanitization of user input can reduce the success of content

injection attacks significantly. It is also important to take a defense-in-depth approach,

meaning that a single control should not be the sole defensive mechanism to disable an

attacker. While proper input validation and output encoding are important, a well-

configured CSP can help by adding another layer of defense in case an input is not

properly validated or a configuration change creates a vulnerability.

5. Recommendations for Testers
Testers should learn why CSP bypass methods work and how they could expand

on the concepts. Understanding the CSP directives used by an application can paint a

picture of how the application functions, or how the application functioned at one time if

the policy has not been updated recently. This includes possible methods of compromise.

CSP misconfigurations may also be reported in penetration testing reports and bug

bounty programs even if there are not any exploitable parameters. This information can

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

22

	

Author	Name,	email@addressgmail.com	 	 	

be helpful to defenders to help tighten the configuration in case an avenue for attack

arises.

Testers should also stay up to date on new developments with CSP and any

potentially new bypass methods. As stated in this research, not all bypass opportunities

come from misconfigurations. Future updates to CSP and browser implementations could

lead to other instances of browsers not handing CSP properly. These instances could lead

to policies being bypassed completely, such as the CVE-2020-6519 vulnerability (NIST,

2021) mentioned in Section 3.4.2.

Bug bounty programs can also be a good source of information on new methods

once the findings are disclosed. As CSP usage continues to grow the amount of focus on

CSP may rise, which could lead to new tools, additional findings, and even more bypass

opportunities.

6. Conclusion
Content Security Policy usage is on the rise, and even though the technology is

relatively new, it shows promise. CSP should not be used as a sole defense mechanism

for injection attacks. Defenders should be sure to include CSP in any defense-in-depth

strategy, as misconfigurations on larger or older sites can be trivial. Defenders should see

CSP as another layer of defense against content injection attacks, while testers should

consider it a potential hurdle between themselves and code execution.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

23

	

Author	Name,	email@addressgmail.com	 	 	

References
Content security policy 1.0. (2012, November 15). World Wide Web Consortium

(W3C). https://www.w3.org/TR/2012/CR-CSP-20121115/

Content security policy level 2. (2016, December 15). World Wide Web Consortium

(W3C). https://www.w3.org/TR/CSP2/

Content security policy level 3. (2021, March 24). World Wide Web Consortium (W3C).

Retrieved April 1, 2021, from https://www.w3.org/TR/CSP3

Crawler.Ninja. (n.d.). Crawler.Ninja. Retrieved April 9, 2021, from https://crawler.ninja/

CSP Evaluator. (n.d.). CSP Evaluator. Retrieved April 9, 2021, from https://csp-

evaluator.withgoogle.com

Digininja/DVWA. (2021, March 27). GitHub. Retrieved April 2, 2021,

from https://github.com/digininja/DVWA

HackTricks. (n.d.). Content security policy (CSP) bypass. HackTricks - HackTricks.

Retrieved April 9, 2021, from https://book.hacktricks.xyz/pentesting-

web/content-security-policy-csp-bypass

Hunt, T. (2017, November 15). Locking down your website scripts with CSP, hashes,

nonces and report URI. Troy Hunt. https://www.troyhunt.com/locking-down-

your-website-scripts-with-csp-hashes-nonces-and-report-uri/

IETF. (2016, January). RFC 7762 - Initial assignment for the content security policy

directives registry. IETF Tools. https://tools.ietf.org/html/rfc7762

Mozilla. (2021, March 17). CSP: Script-src. MDN Web Docs. Retrieved April 9, 2021,

from https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-

Security-Policy

NIST. (2021, March 12). Cve-2020-6519. NVD - National Vulnerability

Database. https://nvd.nist.gov/vuln/detail/CVE-2020-6519

OWASP/Top10. (2019, September 19).

GitHub. https://github.com/OWASP/Top10/blob/master/2017-

2003_Comparison/OWASP_Top_Ten_-

_Comparison_of_2003%2C2004%2C2007%2C2010%2C2013_and_2017_Relea

ses.docx

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

Content Security Policy Bypass: Exploiting Misconfigurations

24

	

Author	Name,	email@addressgmail.com	 	 	

OWASP. (n.d.). Cross site scripting (XSS). OWASP Foundation | Open Source

Foundation for Application Security. https://owasp.org/www-

community/attacks/xss/

OWASP. (n.d.). Cross site scripting prevention. Introduction - OWASP Cheat Sheet

Series. https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prev

ention_Cheat_Sheet.html

Scott Helme. (n.d.). Scott Helme. Retrieved April 4, 2021, from https://scotthelme.co.uk/

Shaked, A. (2020, June 17). Exfiltrating user’s private data using Google analytics to

bypass CSP. PerimeterX. https://www.perimeterx.com/tech-

blog/2020/bypassing-csp-exflitrate-data/

Verizon. (2020). 2020 Data Breach Investigations

Report. https://enterprise.verizon.com/content/verizonenterprise/us/en/index/reso

urces/reports/2020-data-breach-investigations-report.pdf

Weizman, G. (2020, August 10). CSP bypass vulnerability in Google chrome discovered

- Almost every website in the world was at risk. PerimeterX.

https://www.perimeterx.com/tech-blog/2020/csp-bypass-vuln-disclosure/

