
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Web App Penetration Testing and Ethical Hacking (Security 542)"
at http://www.giac.org/registration/gwapt

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gwapt

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

 Analyzed Java Code Snippets: The Corpus

GIAC GWAPT Gold Certification

Author: Hitarth Patel, contact@hitarthpatel.com

Advisor: Jonathan Risto

Accepted: August 19, 2021

Abstract

Static Code Analysis is a way to find vulnerabilities in source code. However, this

process is flawed due to the significant amount of false-positive findings that take

additional time and resources to address, taking away from remediating actual

vulnerabilities. For this research, a corpus was created to begin the process of developing

a machine learning model that could potentially weed out false positives. Due to the lack

of datasets available for this project, it is focused on the process of developing the

datasets that could feed the machine learning model. This paper is a blueprint for future

research and improvement of processes to find vulnerabilities without false positives.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

2

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

1. Introduction

	 Static Code Analysis or Source Code Analysis (SCA) refers to the ability to

discover vulnerabilities via Taint Analysis and Data Flow Analysis in static (non-

running) source code (“Static Code Analysis,” n.d.). Software developers and security

engineers use SCA tools to scan source code, identify vulnerabilities, analyze the results

to eliminate false-positive findings and address potential vulnerabilities. Many SCA tools

can be integrated into an organization’s Software Development Life Cycle (SDLC),

enabling developers to take early action and produce secure applications. It is important

to note that taking early action on these vulnerabilities proves to be the cheapest solution

for developers long term, in addition to allowing them to address and manage risks

effectively (Koc, 2019).

Despite SCAs ability to run independently, a significant issue often encountered is

the amount of "false-positive" findings that developers and engineers must deal with

(Ayewah, 2010). A false-positive finding occurs when SCAs incorrectly identify a

vulnerability that is not present.	A willing trade-off that these tools have is to make the

analyses faster, increasing "false-positive" findings (Koc, 2019). Therefore, fast scan

requisites arise, perpetuating the need for development teams to reduce false-positive

friction (Wisseman, n.d.). Security and development teams must exhaust valuable

resources to analyze findings in order to eliminate potential false-positives and to

facilitate the count of false findings. The demand for such investments ultimately results

in teams being disinclined to utilize SCA.

The motivation to create the proposed dataset arose as a need for machine

learning research aiming to support the prediction of false-positive findings using source

code. A binary classification model (AutoAudit) or a neutral network conceptualized to

identify false-positive findings will work with the Java corpus created in this research to

identify false-positive vulnerabilities or vulnerabilities. Additionally, the corpus could be

used in other aspects such as generating secure code based on the category, automatically

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

3

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

providing remediated solutions to known vulnerabilities, and identifying potential secure

code corrections based on previously learned patterns.

2. Fortify Project Reports

Fortify Static Code Analyzer is a tool provided by MicroFocus CyberRes. The

SCA tool is utilized to detect potential vulnerabilities within source code which helps

development teams resolve vulnerabilities before pushing code into production. The

project produces a Fortify Project Report (FPR) once scanned. The FPR is usually located

at “path/to/project/target/fortify/<project-name>.fpr.” FPR files archive various XML

files containing information about each finding within the FPR and directories containing

every Java file with potential vulnerabilities. For future reference, it is important to note

that in addition to Java, Fortify SCA also supports many other languages such as

ASP.NET, C/C++, C#, ColdFusion, JSP, PL/SQL, T-SQL, XML, VB.NET, and other

.NET languages. Due to the extensibility to other programming languages, it is possible

to create datasets using similar methods in any of the languages supported by Fortify

SCA.

Fortify SCA is used to discover and fix the following programming weaknesses at

the root cause: Buffer Overflow, Command Injection, Cross-Site Scripting, Denial of

Service, Format String, Integer Overflow, Log Forging, Password Management, Path

Manipulation, Privacy Violation, Race Conditions, Session Fixation, SQL Injection,

System Information Leak, and Unreleased Resource. It sorts, filters, and categorizes these

issues found in different structures, making it simple to survey and examine through the

Audit Workbench. The outcomes can likewise be sent out as a report in configurations

like HTML and XML (D’ Souza, 2007). This facilitates collaboration and an easy

understanding of the weaknesses that need to be addressed.

2.1. False Positive Rates

SCAs must deal with the rate of false-positive findings within their reports.

Usually, many SCAs will try to combat this by improving upon whichever method they

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

4

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

prefer to identify possible exploits. For instance, Fortify SCA uses a collective form of

analysis containing five different analyzers: Data Flow, Semantic, Control Flow,

Configuration, and Structural (D’souza, 2007). Additionally, Fortify SCA also checks for

secure coding practices using rulepacks. There are continuous updates that Fortify

maintains for rulepacks as well the Fortify Global Analyzer to combat the rate at which

false-positive findings are identified. Moreover, the rate of false-positive findings also

reflects on the size of the codebase and development practices used by the developers.

2.2. Audit Workbench

	 The Fortify Project Report file can only be opened by Audit Workbench for

analysis. The software provides an interface to perform analysis as well as preserve

historical data for the project. In Figure 1, the “Details” tab will provide information on

why the finding was alerted and information displaying what the category identified is.

Additionally, the “Recommendations” tab allows the analyst to get exposed to possible

remediations for the specific category. The “Analysis Trace” allows the analyst to follow

the stack trace on where the vulnerability is and the possible path taken by the

vulnerability. This helps the analyst provide an educated analysis report of any finding.

Moreover, the analyst can create a historical record of each finding along with the

remediation comment in the “Audit” tab, as shown in Figure 2.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

5

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Figure 1. Example of the “Audit Workbench” software from Fortify
Notes. Audit Workbench is a software tool provided by Fortify that allows security

analysts to perform analysis to identify false-positive findings and confirm legitimate

security vulnerabilities.

Figure 2. Audit workbench audit view

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

6

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Notes. The “Analysis” dropdown menu can be changed per analysis and is one of the

mined data points when parsing an FPR.

3. Dataset Creation

To predict whether a finding is true or false based on source code, it would

require a very fine-tuned dataset that highlights where the taint is within the source code.

For a problem identifying whether a piece of code is exploitable or not, a labeled dataset

needs to be created to be ingested by an agnostic model. The code should be labeled

correctly (e.g., “Not a Finding” or “Suspicious”) since incorrect labeling could lead to

unexpected predictions by the model. Various open-source Java projects were used to

create a labeled database to approach this regardless of the number of stars or forks;

furthermore, the first iteration of projects scrapped from GitHub had to be built using

maven, and this is because the only available tool to produce the data is the maven plugin

from Fortify. The crawler script was revised to download all Java web application

projects focused on most stars to least. This revision resulted in a total of 14,092 projects

that could be scanned to increase the size of the dataset. Additionally, the

mavenFortifyScan.py script was revised to allow for scanning projects that do not utilize

maven resulting in an increase in the number of projects downloaded.

Due to the lack of publicly available datasets that contain analyzed code snippets

for Java Projects, the paper presents a newly curated corpus containing 221 projects

scraped from GitHub, composed of 96,928 java source code files. Using Fortify Static

Code Analyzer, every application was scanned to generate a Fortify Project Report.

These FPRs contain categorized findings that are analyzed to determine false-positive or

suspicious findings. Due to the complexity and time constraints, the analysis was

performed on only a few selected code quality categories:

● Password Management: Hardcoded Password

● Hardcoded Password

● Weak Cryptography

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

7

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

● Empty Password

● Password in Comment

● Missing Check for Null Parameter

● Access Control Database

Furthermore, the specific categories in this research resulted in a smaller than

significant dataset than expected. Even in open-source software, the importance of

password management is prioritized, which results in very few projects having this

vulnerability flagged. The dataset aggregation process was integrated into a core tool

called “AutoAudit.” AutoAudit is a classifier that will identify false-positive findings

based on the produced FPR for a project as well as perform multiple utility functions

such as dataset preparation and FPR parsing. After all the datasets that met the

requirement for AutoAudit were analyzed and labeled, the results were compiled in a file

and set in the Attribute-Relation File Format (ARFF), which is a numerical form that can

be used in the Waikato Environment for Knowledge Analysis (WEKA) classifiers for

future direct use by security researchers.

3.1. Mining Repositories - The Process

Figure 3 helps visualize the process explained step-by-step in Figure 4, developed

for easy reproducibility. Section 3.2 and 3.3 will provide a brief and condensed overview

of each step listed below.

	

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

8

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Figure 3. Visualization of the dataset collection and preparation.
	

Step Task

1 Use the “Crawl” script to download repositories using GitHub API.

Script: Crawler/Crawl.py

2 Clean up invalid projects/ projects with corrupted zips.

Script: Crawler/Crawl.py

3 Use Fortify SCA maven plugin and a custom script to scan all projects

and move all “.fpr” files produced to a common directory “FPRs.”

Script: mavenFortifyScan.py

4 Manually analyze all FPRs for the dataset.

Script: Human.

5 Use the FPRParser script to parse all analyzed FPRs for all issues and

extract all source code files associated with any actual or false findings

for dataset creation.

Script: FPRParser/FPRParser.py

6 Use the extracted source files in the obfuscated-code2vec dataset pipeline

(Compton, 2020) and convert each source code file in .arff

Script: obfuscated-code2vec/pipeline/create_datasets.sh

GitHub: https://github.com/basedrhys/obfuscated-code2vec

Figure 4. Dataset creation process
	

 The first task in the application was to crawl and identify potential projects to

download from GitHub API. The script specifically looked for Java applications utilizing

the Maven project management tool. The script found a total of 221 total potential

projects.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

9

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

 The next task was to automatically identify all scannable project locations to feed

into the “mavenFortifyScan.py” script. This involved identifying the parent pom.xml file

and moving the directory containing the file to another folder. The script also removed

any duplicate projects.

 The directory containing the scannable projects was then iterated by the

“mavenFortifyScan.py” script. It used the Maven Fortify SCA plugin to scan all projects

and separate projects that did not scan successfully. This resulted in two more directories

containing scanned projects and projects that produced errors during scanning.

Furthermore, another directory was generated with all the FPRs generated from

successful scans.

 Next, an intermediate step requiring human intervention was implemented. A

human analyzed the generated FPRs to produce accurate labels for each finding. Doing

this allowed for easy extraction of source code and its corresponding analysis.

 Once the FPRs were analyzed, the directory containing all the FPRs was iterated,

and each FPR was parsed using the “FPRParser.py” script. The parser gathered all

necessary information from the FPR and created a finding object to keep track of each

finding, its analysis, and the related source code snippet file location. The parser was also

used to fetch any issue, whether analyzed or not, adding versatility to the tool. Moreover,

the script extracted all source code files to their corresponding analysis, aggregating

source code for all false-positive detections in one directory.

 Once all the FPRs were parsed, the final step produced the ARFF format for our

source code to prepare it for any machine learning model. To produce the ARFF files for

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

10

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

the dataset, the obfuscated-code2vec dataset pipeline was used, as shown in Figure 5.

Figure 5. Dataset Pipeline from Obfuscated-Code2Vec
Notes.	This	figure	was	produced	by	Rhys	Compton,	Eibe	Frank,	Panos	Patros,	and	

Abigail	Koay	for	their	research	paper	Obfuscated-Code2Vec.	The	repository	uses	

MIT	licensing.	From	Compton,	R.,	Frank,	E.,	Patros,	P.,	&	Koay,	A.	(2020,	April	6).	

Embedding	Java	Classes	with	code2vec:	Improvements	from	Variable	Obfuscation.	

arXiv.org	e-Print	archive.	https://arxiv.org/pdf/2004.02942.pdf

The source code files, divided by classes, were fed into the dataset pipeline. It

utilized the code2vec model to create vectors for each source code file. The pipeline

ingested the source code file, parsed it, separated each method within the class, and

produced vectors. The vectors were then aggregated into a vector representing the entire

code snippet file. After all classes were converted into vectors, the vectors were

aggregated into a dataset that could be utilized in any WEKA classifier or machine

learning model supporting the input, as seen in Figure 3.

3.2. Identify Valid Projects

To ensure that the new dataset contains pertinent information, the GitHub Crawler

must define the requirements before downloading projects needed to scan. The GitHub

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

11

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Crawler uses GitHub’s REST API to search, filter, and download Java projects using

maven. The crawler looks for any project containing the “pom.xml” file needed to build

any maven project. The script will then download the projects to a directory called

“extractedApps” under “../data/extractedApps”. For this research, the crawler found a

total of 221 valid maven projects to scan, of which 15 projects were not successfully

scanned due to corrupt zip archives downloaded from GitHub. Upon further research, it

was found that some scenarios, such as a large zip archive over the size of 1 GB, result in

Github corrupting the zip archive.

3.3. Scanning and Analysis

	 To	scan	any	Java	project,	the	SCA	follows	four	distinct	phases	as	described	in	

the	latest	Fortify	SCA	documentation	(Micro	Focus,	n.d.).	The	initial	phase	is	build	

integration.	The	Fortify	Maven	plugin	allows	the	SCA	to	be	integrated	within	the	

maven	clean,	install,	translate,	build	phases	(Microfocus,	n.d.).	This	allows	for	SCA	to	

scan	the	project	in	any	of	the	lifecycle	phases.	Following	the	build,	the	integration	

phase	is	the	translation	phase.	The	source	code	is	translated	into	an	intermediate	

format	associated	with	the	“buildId,”	usually	the	project	name.	Following	the	

translation	phase	is	the	scanning	phase,	where	the	translated	source	code	is	

scanned	and	the	phase	where	the	FPR	file	is	generated.	The	last	phase	verifies	that	

the	source	code	was	scanned	using	the	correct	rulepacks	and	ensures	no	errors	

were	returned.	The	pipeline	is	fully	automated,	allowing	for	projects	to	be	scanned	

automatically	once	cloned	from	GitHub;	moreover,	the	scans	usually	run	between	15	

minutes	to	30	minutes,	depending	on	the	size	of	the	project.	As	a	result	of	a	

successful	scan,	the	scanner	will	create	a	Fortify	Project	Report	containing	all	

identified	vulnerabilities	that	an	analyst	will	analyze	for	false-positive	findings.	

 Due to how findings are identified within an FPR, there is an excellent chance

that false-positive findings will be present. In order to reduce the rate of false-positive

findings, each finding has to be analyzed manually. Furthermore, if continuous

integration is implemented, then analyzing findings becomes tedious and time-

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

12

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

consuming. Depending on the size of the projects, an analyst would have to go over

thousands of findings to weed out false-positives automatically identified by the scanner.

4. The GitHub Java Corpus

	 The dataset contains all projects downloaded from GitHub using GitHub API.

GitHub API was chosen as a method of mining due to its availability and ease of use. It

should be noted that there was a rate limit of 5,000 requests per hour that would be

inconvenient for a larger dataset and project; however, it did not cause any disruption on

the query used by the crawler script. Therefore, it may be something to keep in mind

when mining for more projects. Another reason why GitHub was the only source for code

is that it has the most extensive software projects. The number of projects used in the

dataset creation process was limited by the sole use of GitHub, a source for projects that

are usually tools or frameworks.

Additionally, the quality of the projects was not considered, as noted in the

Blincoe paper regarding the promises and perils of mining GitHub (Blincoe, 2014). In

total, 221 projects were collected. Out of the 221 projects, only 206 projects were

scanned without producing any errors and contained 96,928 files and 686,858 lines of

code. A total of 107 FPRs were analyzed to produce a total of 51 findings that were of

some variety of the aforementioned categories in section 3. In total, Fortify SCA found a

total of 2,466 findings across all scanned projects.

Furthermore, the dataset is in the .arff (Attribute-Relation File Format) as shown

in Figure 6, so it can easily be used in a WEKA classifier without much data preparation.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

13

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Figure 6. A sample condensed aggregated class vector can be found within
a .arff file.
Notes. The figure represents an aggregated class “7base_spring_mvc_web_application-

1.0-SNAPSHOT.java” vector that can be used as an input in machine learning models.

The dataset .arff file contains all aggregated class vectors.

5. Recommendations and Implications

Since development is usually a human-based process, there will always be

insecure code written, which will require the security community to work together to

reduce the number of false-positive findings. Due to the lack of public datasets that

characterize categorical findings with static source code analysis, the aim was to create a

dataset containing analyzed findings or bugs labeled per category as true-positive or

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

14

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

false-positive. There will be an imbalance of data regarding the ratio of false-positive

findings to true-positive findings in any natural Java project. Considering the imbalanced

data within the corpus, the dataset attempted to balance the findings evenly between the

two classes, “Not An Issue” and “Suspicious,” as labeled in Fortify Audit Workbench

Figure 2. This corpus can provide researchers real value by offering a balanced analyzed

dataset per category for their new defect prediction experiments.

5.1. Implications for Future Research

The dataset only consists of one broad category, Password Management, which

enables speedy analysis. The complexity of findings and categories such as, among

others, SQL Injection, Cross-Site Scripting, and Access Control are proportional. The

time would scale according to the complexity of the analysis. Ideally, time and team

effort would allow more datasets to be collected to find a significant amount of data to

feed to a machine learning model. The findings may have input taints from different

classes such as controllers or microservices that an analyst would need to consider when

evaluating findings.

In the future, there would be a need to change the “JavaExtractor'' used by the

Obfuscated-code2vec model (Compton, 2020) to capture the complex semantics of the

code. Due to the simplicity of the Password Management category, the needed

information can usually be captured within the same class where the taint is identified.

Additionally, a couple more categories, such as Access Control: Database, and Missing

Check for Null Parameter, were analyzed to boost the size of the dataset. Moreover, the

categories analyzed attempt to ensure that the vulnerability is captured from the

originating source file allowing for capturing the complete semantics of the code. The

Access Control: Database was a complex finding category. The analyst was required to

ensure that the controller, or wherever the input was provided, took into account which

user policy or permission is required in order to execute the method. The semantics for

this category involves multiple code snippets that need to have a relationship defined in

order to help the classifier predict more accurately. Therefore, Compton's JavaExtractor

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

15

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

used in the Obfuscated-code2vec model was not modified and used as a transfer learning

model.

Considering that the dataset is minimal, it would make sense to expand into other

code quality categories to increase the size of the dataset. Some possible categories that

can be tackled are the “Dead Code” category, which consists of identifying findings that

have unused variables, fields, or methods; “Poor Style” category, which consists of

identifying findings where the values of variables are never read; “Confusing Naming,”

where a variable and a method will both have the same name; and “Poor Error Handling”

category, which consists of empty catch blocks or overly broad catch or throws when it

comes to exceptions. These few categories can help increase the size of the dataset;

however, the problem with imbalanced data would still have to be tackled. There is no

guarantee that each category will have an even number of false-positive to true-positive

ratios.

Lastly, the process calls for maintenance for the dataset, as well as growing the

dataset, since small datasets often result in overfitting, meaning that the machine learning

model will learn the training data too well and thus perform poorly when new data is

presented. In order to prevent the model from overfitting, the size of the dataset must

build over time.

6. Conclusion

The lack of publicly available datasets containing analyzed Java code snippets

that correspond to a specific secure code category made it imperative to create a corpus

that tackled this gap since the need for this dataset arose when trying to develop a

machine learning model that could identify false-positive findings from code snippets. In

order to produce the dataset, a custom tool, AutoAudit, was developed to crawl, clean,

and prepare the data in the ARFF file format, which allowed for direct dataset use with

WEKA classifiers. The method presented attempted to provide balanced data as an easy-

to-use, plug-and-play dataset. To develop a significant corpus, time and resources would

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

16

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

play a significant role. Moreover, the dataset can aid in developing a machine learning

model to identify false-positive findings. The successful development of a fully

functioning model would allow experts to redirect their resources to address actual

vulnerabilities. Furthermore, the dataset can be used for future research regarding false-

positive finding prediction and automatically generated secure code.

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

17

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

1. References

Ayewah, N. (2010). Static Analysis in Practice. drum.lib.umd.edu.

https://drum.lib.umd.edu/bitstream/handle/1903/10934/Ayewah_umd_0117E_11

597.pdf?sequence=1

Blincoe, K., Kalliamvakou, E., Singer, L., Gousios, G., German, D., & Damian, D.

(2014, May 31). The Promises and Perils of Mining GitHub.

https://kblincoe.github.io/publications/2014_MSR_Promises_Perils.pdf

Compton, R., Frank, E., Patros, P., & Koay, A. (2020, April 6). Embedding Java Classes

with code2vec: Improvements from Variable Obfuscation. arXiv.org e-Print

archive. https://arxiv.org/pdf/2004.02942.pdf

D'souza, D. (2007, April 24). TOOL EVALUATION REPORT: FORTIFY.

Carnegie Mellon School of Computer Science |.

https://cs.cmu.edu/~aldrich/courses/654-sp07/tools/dsouza-fortify-07.pdf

Koc, U. (2019). Improving the Usability of Static Analysis Tools Using Machine

Learning [Doctoral dissertation]. https://drum.lib.umd.edu/handle/1903/25464

Micro Focus. (n.d.). Using Micro Focus Fortify Static Code Analyzer. Digital

Transformation and Enterprise Software Modernization | Micro Focus. Retrieved

August 6, 2021, from https://www.microfocus.com/documentation/fortify-static-

code-analyzer-and-

tools/2110/SCA_Help_21.1.0/index.htm#Resources/HTMLelements/Title_Page.

htm?TocPath=_____1

Microfocus. (n.d.). Fortify integration ecosystem - MAVEN | Micro focus. Digital

Transformation and Enterprise Software Modernization | Micro Focus. Retrieved

July 2021, from https://www.microfocus.com/en-us/fortify-integrations/maven

Static code analysis. (n.d.). OWASP Foundation | Open Source Foundation for

Application Security. Retrieved June 7, 2021, from https://owasp.org/www-

community/controls/Static_Code_Analysis

Wisseman, S. (n.d.). In-depth analysis comes at a cost – so does a breach! Micro Focus

Community. Retrieved June 7, 2021, from

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

18

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

https://community.microfocus.com/cyberres/b/sws-22/posts/in-depth-analysis-

comes-at-a-cost-so-does-a-breach

	

© 20
21

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2021 The SANS Institute Author retains full rights.

	

Analyzed Java Code Snippets: The Corpus

19

	

Hitarth	Patel,	contact@hitarthpatel.com	 	

Appendix
Project Source Code and Help Docs

To follow the progress of the AutoAudit tool, please refer to the GitHub repository

below.

https://github.com/Gitarth/autoaudit

The Attribute Relation File Format (.arff) dataset
For access to the created dataset, please refer to the Google Cloud Storage link below.

https://storage.googleapis.com/autoauditdataset/autoauditV0.1.zip

