
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Application Security: Securing Web Apps, APIs, and Microservices (Security 522)"
at http://www.giac.org/registration/gweb

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gweb

[VERSION June 2012]

The Dangers of Weak Hashes

GIAC GWEB Gold Certification

Author: Kelly Brown, kbrown@aboutweb.com
Advisor: Robert Vandenbrink

Accepted: November 15, 2013

Abstract

There have been several high publicity password leaks over the past year including LinkedIn,

Yahoo, and eHarmony. While you never want to have vulnerabilities that allow hackers to get

access to your password hashes, you also want to make sure that if the hashes are compromised

it is not easy for hackers to generate passwords from the hashes. As these leaks have

demonstrated, large companies are using weak hashing mechanisms that make it easy to crack

user passwords. In this paper I will discuss the basics of password hashing, look at password

cracking software and hardware, and discuss best practices for using hashes securely.

The Dangers of Weak Hashes 2

Kelly Brown, kbrown@aboutweb.com

1. Introduction
In June of 2012 a hacker posted more than 8 million passwords to the internet belonging

to LinkedIn and eHarmony (Goodin, 2012). Within hours, over two million of the passwords

were cracked and posted on-line. Within a week, 99% of the passwords had been cracked. The

LinkedIn passwords were using the SHA-1 algorithm without a salt making them particularly

easy to crack. The eHarmony passwords were also stored using poor cryptographic practices as

unsalted MD5 hashes. A month later, 450,000 were leaked from Yahoo (Gross, 2012). In this

case, passwords were stored in clear text. These incidents are just a sampling a of the poor

password storage techniques currently in place on major Web sites. While the security flaws that

allowed these passwords to be leaked in the first place are a serious security concern, the lack of

best practices in password storage exasperated the situation.

Implementing a few best practices in password storage will minimize the potential

damage caused by a password leak. The following technicques should be used:

• Store passwords as hashes using strong encryption algorithms

• Salt the hashes

• Employ key stretching or slow algorithms to increase password cracking time

• Encrypt the password hashes

The Dangers of Weak Hashes 3

Kelly Brown, kbrown@aboutweb.com

2. Hashing

2.1.Understanding Hashes
The commonly used term “hash” refers to a one-way hash function which is a

mathematical formula that takes an arbitrary length message and returns a fixed length value. A

hash formula is represented as h=H(M), where h is the hash, H is the hashing function, and M is

the message. The hash formula has several desirable mathematical characteristics:

 Given M, it is easy to compute h.
Given h, it is hard to compute M such that H(M)=h.

 Given M, it is hard to find another message, M’, such that H(M)=H(M’)
(Schneier, 1996)

We want a hashing function where it is easy to compute the hash value, where it is hard

to reverse the computed hash values back into the original message, and it is hard to find two

inputs that generate the same hash value. As an example consider two values generated by the

MD5 hash. The hash value for “password” is “5f4dcc3b5aa765d61d8327deb882cf99” and the

hash value for “passwore” is “a826176c6495c5116189db91770e20ce”. The computer

representation of these two strings is very similar, there is only a one bit difference, yet the hash

values are significantly different. There is also no way to take the computed hash value and

determine the word we started with other than randomly guessing words until you find one that

produces the same hash value.

Hash functions typically genenerate a hash value of a specific bit length. This is usally

160 bits or more. A hash value that is too short will have a high collision rate where many

messages result in the same hash value, so hash sizes should be large enough to accommodate a

large number of values. Hash collisions are unavoidable. Very large messages, sometimes entire

documents, are reduced to a smaller value of a fixed size so there are times when different

messages will produce the same value. However, a good hashing algorithm makes it difficult to

forcibly generate two messages that have the same hash value.

While the sample MD5 hash values above appear to have little in common, MD5 is no

longer considered to be a good hash algorithm because weaknesses have been found in the

algorithm. Researchers have been able to manipulate messages so that two different messages

The Dangers of Weak Hashes 4

Kelly Brown, kbrown@aboutweb.com

result in the same hash. These weaknesses were first reported in 1996 and security experts

started suggesting that MD5 be replaced with stronger algorithms (Dobbertin, 1996).

So how do you know if an hash algorithm is good? The National Institute of Standards

and Technology (NIST) publishes official standards for hash functions called the Secure Hash

Standard (SHS). The current version of the this document is FIPS PUB 180-4 (National Institute

of Standards and Technology, 2012). This publication defines several hash algorithms including:

SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224 and SHA-512/256. The hashs

after SHA-1 are collectively known as SHA-2 and are part of a newer specification. These

algorithms undergo rigorous testing to ensure they are cyptographically strong. NIST Special

Publication 800-107, Revision 1, Recommendation for Applications Using Approved Hash

Algorithms (National Institute of Standards and Technology, 2012) recommends phasing out the

use SHA-1 because of recent weaknesses found in the algorithm. Weakness may one day be

found in the SHA-2 algorithms; SHA-3 is already in the works but has not been finalized yet.

Cryptography is a constantly advancing science. As computing power increases and weakness

are found in the current algorithms, a new generation of stronger algorithms takes their place and

the cycle repeats.

The NIST standards are not the end all be all of hashing algorithms. There are several

other hasing algorithms such as RIPEMD, Tiger, and SWIFFT that have been extensivly tested

by security researchers. However the NIST algorithms are generally considered to be secure and

are required for government related work.

2.1.1. The Psychology of Password Selection

In December of 2009 a social gaming site RockYou.com was hacked and 32 million

passwords were exposed (Signler, 2009). An analysis of the passwords (Imperva, 2010) revealed

several trends how users select passwords. People tend to use short passwords; 30% of the

passwords were six characters or less and over 50% where eight characters or less. People tend

to use a limited set of characters for passwords; 40% of people choose passwords consisting only

of lower case letters, 16% of people used only numeric characters in their passwords, and less

than 4% of people used special characters. People use common words for their passwords; 50%

of people choose slang, dictionary words, or trivial passwords consisting of adjacent letters,

The Dangers of Weak Hashes 5

Kelly Brown, kbrown@aboutweb.com

numbers, or simple patterns for their passwords such as a word followed by a one or more

numbers. The most common password was “123456”. Of the 32 million accounts leaked, there

were only 14.5 million unique passwords meaning there was a lot of duplication of passwords.

The “123456” password for example, was used by over 290,000 different accounts.

The RockYou password leak was a critical turning in password cracking. Not only did

this provide an extensive list of commonly used passwords, it provided an insight in the

psychology of password selection and allowed password crackers to limit the scope of their

attacks which decreased the time and increased the likely hood of cracking passwords. This

trend continues today, each new password leak is added to word lists and reveals more about the

psychology of password selection.

2.2.Password Cracking
While there are many attacks against password protection systems, password cracking

refers to the process of extracting passwords from data. This data is typically the hash values of

passwords. As we have seen, this data is often leaked by web sites but can also be obtained by

gaining physical access to an operating system.

The most straightforward attack is called the brute-force attack. This is simply trying

every possible combination of characters until you find a matching hash value. This can become

very time consuming particularly with long passwords. The difficulty also increases when more

characters are allowed in passwords. Table 1 shows the number of possible combinations using

the length of the password and different character combinations. The numbers grow quite large

as the length and complexity of the password increases and this would seem to make password

cracking impossible. While it’s true that the length of time to brute-force passwords increases

with complexity, there are several other techniques that crackers can use to expose these

passwords.

Characters in

Password

Lower Case Letters Lower and Upper

Case

Full ASCII

1 26 52 256

3 17,576 140,608 16,777,216

The Dangers of Weak Hashes 6

Kelly Brown, kbrown@aboutweb.com

5 11,881,376 3.8*108 1.1*1012

8 2*1011 5.3*1013 1.8*1019

10 1.4*1014 1.4*1017 1.2*1024

15 1.7*1017 5.4*1025 1.3*1036

20 2.0*1028 2.1*1034 1.4*1048

Table 1: Number of Combinations based on Password Length and Scope

Simple brute force attacks become inefficient for long complex passwords, because every

possible combination of letters and characters must be tried. However, most people do not use

random passwords. They use words and names they are familiar with and this is where dictionary

attacks come into play. Instead of trying random series of characters, a dictionary attack uses a

list of words to match hashes. Originally this was a list of all the words in the dictionary, but

these lists have been expanded over time. The RockYou attack in particular revealed millions of

commonly used passwords and has become part of the standard dictionary used to crack

passwords.

2.2.1. Rainbow Tables

In 1980 a paper called “A Cryptanalytic Time – Memory Trade-Off” was published in the

IEEE Transaction on Information Theory (Hellman, 1980). This paper introduced the concept of

precomputing cyptologic function values and saving them so they can be used to quickly look up

values. This technique works particuarlly well for hashes and lists of precomputed hashes

became known as “rainbow tables.”

There are many rainbow tables available on-line and most password cracking tools come

with a set of rainbow tables. Any password that has ever been leaked already exists in these

rainbow tables which is what makes password reuse particularly dangerous. Rainbow tables

allow near instaneous cracking of a password since the hash value has already been calcualted

and simply needs to be looked up. For example, using the sample rainbow table in Table 2 and a

hash value of “a61a78e492ee60c63ed8f2bb3a6a0072” you can quickly calculate the

corresponding password is “pa$$word”. Real hash tables consist of a large number of

precalculated values.

The Dangers of Weak Hashes 7

Kelly Brown, kbrown@aboutweb.com

5f4dcc3b5aa765d61d8327deb882cf99 password
bed128365216c019988915ed3add75fb passw0rd
90f2c9c53f66540e67349e0ab83d8cd0 p@ssword
a61a78e492ee60c63ed8f2bb3a6a0072 pa$$word
b7463760284fd06773ac2a48e29b0acf p@$$w0rd
482c811da5d5b4bc6d497ffa98491e38 password123

Table 2: Sample MD5 Rainbow Table

Ideally, all rainbow tables would be complete, that is they would have a password for

every possible hash value. In practice, rainbow tables are rarely complete especially for large

hash values. The SHA-256 algorithm for instance has a 256 bit hash length which means there

are 1.16*1077 hash values. Not only would a complete hash table be extremely large, but

generating such a table would take a very long time based on current computation speeds. Just

generating the hashes for that many values would take a long time, but because of hash collisions

there would be gaps in the table and due to the nature of the hashing function, there is no way to

reverse engineer the gaps except to keep trying new combinations until every gap is filled.

However, nearly complete rainbow tables with over 99% of possible hash values are available

for NTLM, MD5, and SHA1 on-line (RainbowCrack Project, 2013). There are also complete

rainbow tables for hashing algorithms such as the LM hashes used by older NT versions of

windows including Windows 2000.

While there are many rainbow tables available online, one of the most interesting and

most over looked ones is Google. Because rainbow tables are typically stored as plain text and

made available on Web sites, they are indexed by Google. For example the MD5 hash for

“password” is “5f4dcc3b5aa765d61d8327deb882cf99”. As can be seen in Figure 1, searching

for this hash value through Google returns over 19 thousand results.

The Dangers of Weak Hashes 8

Kelly Brown, kbrown@aboutweb.com

2.2.2. Cracking Software

There are many software applications that have the ability to crack passwords. Many of

these are open source and often used by both white hat hackers (to identify security weaknesses

in passwords) and by actual hackers who are looking to break into systems. A few of the more

popular software packages are:

Cain and Abel (Oxid.it, 2013) is a closed source application that promotes itself is a

password recovery tool for the Microsoft Operating System. It has password cracking capability,

but also has many options for extracting passwords from the file system and network traffic.

John the Ripper (Openwall, 2013) is open source password cracker that was originally

developed to detect weak UNIX passwords. However it has expanded over time and now has

support for many types of UNIX and Windows based passwords.

Hashcat (Hashcat, 2013) is one devoted solely to cracking hashes. It claims to be the

fastest md5, phpass, mscash2, and WPA/WPA2 cracker and performance tests back up these

claims.

All full-featured password crackers support a common set of functionality. They can

brute force passwords using a specified set of characters. For instance, if a site only allows

Figure 1: Google search for MD4 Hash of "password"

The Dangers of Weak Hashes 9

Kelly Brown, kbrown@aboutweb.com

upper case, lower case, and numerical values in passwords there is no point in including special

characters. The goal is to minimize the scope of the combinations that need to be tested.

Password crackers allow you to specify a minimum and maximum password length. If you

know a site requires at least 8 characters in the password there is no point in trying shorter

values. The maximum value is there to provide an upper limit to reduce the time spent trying to

crack the password. This value is somewhat dependent on the speed of the cracking software

and hardware and the maximum time you are willing to allow the cracker to run.

Password crackers also support dictionary attacks which are much faster than brute force

attacks. They allow you to specify a file of words to compare the password to. A popular word

list is the RockYou word list, though there are larger wordlists that have compiled from all

known leaked passwords. Most advanced password word crackers also support the concept of

rules. This is a combination attack using a word list with a limited brute force attack that makes

modifications to the words in the list based on a set of rules. For instance, “password” has

consistently shown up as one of the most popular passwords, but variations of it are also popular.

A rule may specify that the letter “a” in the word list should be replaced with a “@” sign and the

letter “s” by a “$” sign. Using this rule a password list containing the word “password” would

also match “p@ssword”, “pa$$word”, “p@$$word”, etc. This is a very powerful technique, but

rules also increase the number of the combinations that are checked. Too many rules can

become almost as slow as a brute force approach. Most password crackers come with a set of

sample rules and there are also rule sets available on-line based on the analysis of the many

password leaks that have occurred.

Password cracking is typically done in stages of efficiency removing identified hashes

from the list after the corresponding password is found. This reduces the size of the list, so the

more complex and time consuming approaches are run against fewer hashes. Running a brute

force attack against a list of passwords is very time consuming, so the first pass at a password list

is typically a straight dictionary attack. This is usually quite effective (unfortunately) and can

usually identify a significant number of passwords in a list. The next pass is typically a

dictionary attack with a rule set which is then followed by a limited brute force attack. At this

point the list is usually a small fraction of the original list and more intensive techniques can be

tried such as a dictionary attack with a larger rule set or a more comprehensive brute force attack.

The Dangers of Weak Hashes 10

Kelly Brown, kbrown@aboutweb.com

Cracking software is being continuously improved and optimized for performance. In

December 2012 at the Passsword^12 conference, Jen Steube announced an improvement to the

SHA1 hashing calculation algorithm that increased the speed by 21% (Steube, 2012). Jen Steube

is the developer of the Hashcat and this improvement has been incorporated into the Hashcat

application. As these algorithms are optimized, it allows cracking to happen faster and provides

the opportunity for more complex attacks.

Figure 2 shows a sample Hashcat attack. In this example I used the following command:

cudaHashcat-plus64.exe -m 0 7kmd5.txt rockyou.txt. The command line executable program is

cudaHashcat-plus64.exe. The cuda stands for the CUDA (NVIDIA, 2013) parallel computing

platform used by NVIDIA graphic cards that allows Hashcat to use the GPU. The “-m 0”

command line options specifies the MD5 hash. The “7kmd5.txt” file is source file of hashes and

the “rockyou.txt” file is a dictionary file. This was a straight dictionary attack and, as can be

seen in the output, 28.85% of the 6871 hashes were cracked in a total of 7 seconds.

 Figure 2: Sample Hashcat Attack

The Dangers of Weak Hashes 11

Kelly Brown, kbrown@aboutweb.com

Figure 3 shows the same crack run again, but using a rule set file. As you can see in the

figure, nearly twice as many passwords (44.74%) were recovered using a rule file as opposed to

a straight dictionary attack. The second attempt also took twice as long to run due to the

increased complexity of using a rule set. However, the rules actually generated 64 times as many

hash codes. You might expect it take 64 times as long to run, but the second run makes

extensive use of the GPU, 60% versus only 2% in the first run. The much faster GPU of the

graphic card is used by the Hashcat program when you start applying different rules to the word

list.

Figure 3: Hashcat Using Rule Set

The specific rule set used in this scenario comes with Hashcat and is called the best64

rule set. It is a list of rules developed by the Hashcat community that have been found to be

effective in cracking passwords. An excerpt from the file of the first few rules looks like this:

nothing, reverse, case... base stuff
:
r

The Dangers of Weak Hashes 12

Kelly Brown, kbrown@aboutweb.com

u
T0

simple number append
$0
$1
$2
$3
$4
$5
$6
$7
$8
$9

Understanding what these rules do will give you some insight into the types of rules

password crackers use. The first command “;” means do nothing or just use each word as it

appears. The second command “r” stands for reverse and tries the word backwards. The third

command “u” converts the word to upper case. The fourth command “T0” toggles the case of

the first character. The next series of commands “$0” through “$9” tries appending numbers to

the word. Applying these rules to the word “password” generates the following sequence of

words: password, drowssap, PASSWORD, Password, password0, password1, password2,

password3, password4, password5, password6, password7, password8, password9.

2.2.3. Hardware

While specialized hardware has been built for security purposes it is generally an

expensive proposition limited to those with large budgets such as governments. This changed in

the 2007 when NVIDIA released the CUDA development kit with their G80 processor (Li,

2010). The CUDA development kit allowed developers to harness the power of the Graphics

Processing Unit (GPU) for applications other than simply graphics. Unlike the Central

Processing Unit (CPU) which is the core of the general purpose computer, GPUs have limited

capabilities. They are designed to process graphic commands which are highly parallelized and

follow regular patterns. While the capabilities of GPUs are limited, they can process

Cryptographic functions like hashes quickly and efficiently, making them useful tools for

cracking passwords.

The new version of Hashcat known as oclHashcat-plus (Hashcat, 2013) has added

support to use the graphic cards to increase the performance of hashing calculations. As an

The Dangers of Weak Hashes 13

Kelly Brown, kbrown@aboutweb.com

example of the performance boost, my laptop running a 2.30 GHz Intel i7-3610QM core, can

compute 55.2 million hashes per second using the regular version of Hashcat. The OCL version

of Hashcat using my GeForce GTX 670M graphic card GPU can generate 547.2 million hashes

per second, nearly a tenfold increase in performance. It’s also important to note that this is a

laptop with a mobile graphics card --desktop computers with full graphic cards see even better

performance.

At the Password^12 conference in 2012, Jeremi Gosney presented a high performance

clustered password cracker (Gosney, 2012). Figure 3 shows the configuration of one of five

servers that made up the cluster which included a total of 25 graphic cards. The cluster used

oclHashcat-plus to crack passwords. Using this cluster he was able to process 180 billion MD5

passwords per second. If we compare this to total combinations I calculated back in Table 1, this

device is capable of brute forcing all 8 character lower case passwords in just over a second.

 Figure 4: Password Cracking Machine (Gosney, 2012)

The Dangers of Weak Hashes 14

Kelly Brown, kbrown@aboutweb.com

While Jeremi Gosney’s machine is very fast, it is also a rather expensive proposition to

the average person. However, thanks to the power of the cloud, this expense can be mitigated.

According to Info Security (Info Security, 2010), a German hacker used an Amazon cloud

instance to crack all six-character combinations of the SHA-1 hashing algorithm in 49 minutes

for $2.10. The cloud gives a tremendous amount of power to users at very little cost putting high

performance password cracking into the hands of the average user and reinforcing the need to

ensure hashes are used securely.

2.2.4. Social Cracking

The LinkedIn password leak demonstrates the social aspect of password cracking. The

passwords that were originally leaked were not the full set of passwords, but the ones the original

hacker couldn’t crack (Goodin, 2012). Less than two and half hours after the original list of 1.5

million hashes was posted on the InsidePro cracker forum, a user responded with 1.2 million of

them cracked. This process continued with password crackers taking the remaining list and

narrowing it down over time. This process highlights the social aspect of password cracking as

the collective resources of thousands of users are applied to crack password lists. This represents

a tremendous amount of collaborative computing resource and password cracking expertise

which was able to crack the majority of the difficult LinkedIn passwords in a matter of hours.

2.3.Hashing Best Practices
Given the different types of attacks and vulnerabilities of hashes we’ve discussed, they

may not seem like they are worth using. However, the alternatives are limited when passwords

are used and it’s certainly more secure than storing passwords as clear text. There are three

primary techniques that are used to improve hash security: adding salt to the hash (which

increases the time needed to compute the hash), and employing encryption on the hash values.

2.3.1. Salting Hashes

The concept of adding salt to a hash is pretty straight forward; an additional value is

appended or prepended to the password before it is hashed. This prevents the use of rainbow

tables and saving computed values to crack the passwords. While the implementation is straight

forward, salt still needs to be implemented properly in order to be beneficial.

The Dangers of Weak Hashes 15

Kelly Brown, kbrown@aboutweb.com

Use unique salt values. A different salt should be created for each password/user. If the

same salt were used for all the passwords in your system a rainbow table could be created for the

set of passwords and a cracker would only have to try each hash value once and compare to all

the passwords used in the system. Using a unique salt for each password forces the attacker to

run the cracking process for each password separately.

Use a large salt value. Most hash implementations support 32 or 64 bit salts. A small

value such as one character/byte, limits the scope of the salt to only 256 values and would allow

a cracker to generate a lookup table for each of the 256 values.

Randomly Generate salt values. Ensure the salt value is randomly generated across the

range of values. A salt that is duplicated for many passwords suffers from the lookup table

problem.

Salt values do not need to be hidden. The purpose of the salt is to add entropy to the

hashed value. Attempting to hide the salt is considered security through obscurity which has

been proven time and again to be a poor security practice.

2.3.2. Slowing Cracking

Because hash values cannot be calculated in reverse as designed, the general approach

used in cracking passwords is to try a lot values until you find a match. Most hashing algorithms

are quite fast and millions of comparisons can be computed per second. If it takes one second to

compute a hash, it is not really noticeable to a user logging into a system, but to a password

cracker one second to calculate each hash value can make password cracking impossible to

accomplish in a reasonable amount of time.

Password-Based Key Derivation Function (PBKDF2) was originally proposed by RSA

Laboratories as part of the Internet Engineering Task Force’s RFC 2898 (RSA Laboratories,

2000). The basic idea is to iterate over a hashing function using the output of each iteration as

the input for the next, this is also known as key stretching. So instead of simply using SHA1 to

compute the hash once, you use it thousands of time. This concept is designed to scale as

computers become faster; if the computing speed of a hash doubles you can simply double the

number of iterations.

The Dangers of Weak Hashes 16

Kelly Brown, kbrown@aboutweb.com

One of the earlier implementations of this technique is the bcrypt algorithm presented at

the 1999 Usenix conference (Provos & Mazières, 1999). It uses a modified version of the

Blowfish which is computationally intensive and uses configurable iterations to produce a

computationally expensive and scalable hashing algorithm. Despite being introduced relatively

recently, the computational intensive portion of the algorithm has been mitigated by GPU

implementations.

A more recent algorithm is scrypt which was introduced at BSDCan in 2009 (Percival C.,

2009). It is specifically designed to be difficult to implement in GPUs by using large amounts of

randomly accessed memory. This algorithm is currently in draft status as in IETF standard

(Percival & Josefsson, 2013), but is widely supported by the security community.

2.3.3. Encrypting Hashes

Once you have salted your passwords and used a slow hashing algorithm, the next step is

to introduce encryption. The most straight forward approach is simply to encrypt the passwords

using a strong encryption algorithm such as AES. This makes the hashes uncrackable without

the encryption key. However, this also introduces problems with key management which is a

difficult issue in itself. If a system is fully compromised the encryption will likely be

compromised. However in many cases, such as the LinkedIn attack, the passwords are leaked

through a SQL injection attack and the server was never fully compromised. Since encryption

keys are stored outside the database, this provides an extra level of protection.

 To provide an extra level of security, a hardware security module (HSM) can be

employed. An HSM moves cryptographic functions or keys off the server into a separate device.

This type of security is very difficult to defeat because the keys cannot be stolen; they exist

within the HSM hardware and are not retrievable.

The Dangers of Weak Hashes 17

Kelly Brown, kbrown@aboutweb.com

3. Conclusion
Password leaks are becoming a common occurrence on the internet with several large

scale leaks happing every year. These leaks have revealed the poor practice many companies

employ when storing their passwords. The widely available lists of common passwords, an

expanding knowledgebase on how user select passwords, and advances in password cracking

technologies have made basic hashes more vulnerable than ever. However there are several

security measures that can be put in place to increase the security password hashes:

• Use strong hashing algorithms

o Don’t try to create your own hashing algorithm

o Don’t use outdated algorithms (such as MD5 or SHA1)

o Use SHA2 or similar strength algorithm

• Salt Hashes

o Use a different salt for each hash value

o Use long salt values of at least 32 or 64 bits

o Ensure hash values are randomly generated

o Don’t go out of your way to try to hide hash values

• Employ techniques to slow password cracking

o Use a key stretching algorithm

o Scrypt is currently the preferred algorithm

• Encrypt the password hashes

o Encrypt hash value

o Employ strong key management for encryption keys

The Dangers of Weak Hashes 18

Kelly Brown, kbrown@aboutweb.com

4. References
Dobbertin, H. (1996, Summer). The Status of MD5 After a Recent Attack. Crypto Bytes .

Goodin, D. (2012, June 6). 8 million leaked passwords connected to LinkedIn, dating website.

Retrieved August 3, 2013, from Arstechnica: http://arstechnica.com/security/2012/06/8-

million-leaked-passwords-connected-to-linkedin/

Gosney, J. M. (2012). Password Cracking HPC. Passwords^12. Oslo, Norway.

Gross, D. (2012, July 13). Yahoo hacked, 450,000 passwords posted online. Retrieved August 4,

2013, from CNN: http://www.cnn.com/2012/07/12/tech/web/yahoo-users-hacked

Hashcat. (2013, August 12). Hashcat. Retrieved August 12, 2013, from Hashcat:

http://hashcat.net

Hashcat. (2013, August 12). oclHashcat-plus. Retrieved August 12, 2013, from Hashcat:

http://hashcat.net/oclhashcat-plus/

Hellman, M. E. (1980). A Cryptanalytic Time - Memory Trade-Off. IEEE Transactions on

Information Theory , 401-406.

Imperva. (2010). Consumer Password Worst Practices. Retrieved November 4, 2013, from

Imperva: http://www.imperva.com/docs/WP_Consumer_Password_Worst_Practices.pdf

Info Security. (2010, November 18). SHA-1 crypto protocol cracked using Amazon cloud

computing resources. Retrieved August 13, 2013, from Info Security:

http://www.infosecurity-magazine.com/view/14059/sha1-crypto-protocol-cracked-using-

amazon-cloud-computing-resources/

Li, C.-T. (2010). Handbook of research on computational forensics, digital crime, and

investigation: methods and solutions. IGI Global.

National Institute of Standards and Technology. (2012, August). Recommendation for

Applications Using Approved Hash Algorithms. Retrieved August 7, 2013, from

The Dangers of Weak Hashes 19

Kelly Brown, kbrown@aboutweb.com

Information Technology Laboratory: http://csrc.nist.gov/publications/nistpubs/800-107-

rev1/sp800-107-rev1.pdf

National Institute of Standards and Technology. (2012, March). Secure Hash Standard.

Retrieved August 7, 2013, from Information Technology Laboratory:

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

NVIDIA. (2013, August 13). What is CUDA. Retrieved August 13, 2013, from NVIDIA:

https://developer.nvidia.com/what-cuda

Openwall. (2013, August 12). John the Ripper. Retrieved August 12, 2013, from Openwall:

http://www.openwall.com/john/

Oxid.it. (2013, August 12). Cain & Abel. Retrieved August 13, 2013, from Oxid.it:

http://www.oxid.it/cain.html

Percival, C. (2009). Stronger Key Derivation Via Sequential Memory-Hard Functions. BSDCan.

Ottawa, Canada.

Percival, C., & Josefsson, S. (2013, September 24). The scrypt Password-Based Key Derivation

Function (draft). Retrieved August 13, 2013, from Internet Engineering Task Force:

http://tools.ietf.org/html/draft-josefsson-scrypt-kdf-01

Provos, N., & Mazières, D. (1999). A Future-Adaptable Password Scheme. USENIX ATC '99.

Montgomery, CA: Usenix Association.

RainbowCrack Project. (2013, August 10). List of Rainbow Tables. Retrieved August 10, 2013,

from RainbowCrack Project: http://project-rainbowcrack.com/table.htm

RSA Laboratories. (2000, September). PKCS #5: Password-Based Cryptography Specification.

Retrieved August 13, 2013, from Internet Engineering Task Force:

https://tools.ietf.org/html/rfc2898

The Dangers of Weak Hashes 20

Kelly Brown, kbrown@aboutweb.com

Schneier, B. (1996). Applied Cryptography, Second Edition: Protocols, Algorithms, and Soure

Code in C. New York: John Wiley & Sons, Inc.

Signler, M. (2009, December 14). One Of The 32 Million With A RockYou Account? You May

Want To Change All Your Passwords. Like Now. Retrieved August 3, 2013, from

TechCrunch: http://techcrunch.com/2009/12/14/rockyou-hacked/

Steube, J. (2012). Exploiting a SHA1 Weakness in Password Cracking. Password^12. Oslo,

Norway.

