
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Application Security: Securing Web Apps, APIs, and Microservices (Security 522)"
at http://www.giac.org/registration/gweb

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gweb

!!
[VERSION!September!2013]!

!
! !

Protecting applications against Clickjacking with

F5 LTM

GIAC (GWEB) Gold Certification

Author:!Michael!Nepomnyashy,!mike.nepomny@gmail.com!
Advisor:!Johannes!B.!Ullrich,!Ph.D.!

Accepted:!October!31th!2013!!
!

Abstract!

Clickjacking!is!a!web!framing!attack!that!uses!iframes!to!hijack!a!user's!web!session.!

It!is!a!powerful!hacking!technique!that!poses!a!threat!to!many!types!of!web!

applications.!The!Information!Security!Organization!of!ACC!Corporation!decided!to!

deploy!centralized!protection!against!clickjacking!for!hosted!applications.!The!

implementation!of!an!antiVclickjacking!solution!can!be!quite!challenging!in!a!large!

scale!hosting!organization!with!over!70!applications!that!often!frame!each!other.!

This!paper!describes!a!dynamic!HTTP!headers!approach!that!protects!hosted!

applications!without!breaking!existing!web!framing!relationship!between!webpages.!!

!

!
!

Author!Name,!email@address! ! !

1. Introduction
OWASP defines clickjacking as “…when an assailant uses multiple transparent or

opaque layers to trick a user into clicking on a button or link on another page when they

were intending to click on the top level page. Thus, the attacker is "hijacking" clicks

meant for their page and routing them to other another page, most likely owned by

another application, domain, or both.” (Maas, 2013).

Facebook “likejacking” is one of the simplest clickjacking attack. The goal of

“likejacking” is to trick unsuspecting Facebook user to “like” certain posts or pictures by

routing their clicks to Facebook “like button”. Lets take this scenario:

1. Attacker creates the “bait” page. The purpose of this page is to entice interest in

victims and make them click on this page (Figure 1).

2. The targeted Facebook page with the questionable post is added as a frame on top of

the “bait” page. The opacity is set to 0.0, making the Facebook page completely

transparent (invisible) (Figure 2).

3. The “like” button on the invisible Facebook page is aligned with the “OK” button on

the “bait” page. Every click on the “OK” button hits the “like” button on the targeted

Facebook page (Figure 3).

OKClick&here&to&win&trip&to&Las&Vegas

http://bate.rts.net

 Figure 1

!
!

Author!Name,!email@address! ! !

 Picture 2

OKClick(here(to(win(trip(to(Las(Vegas

http://bate.rts.net

 Picture 3

So far, clickjacking attacks have been limited to social sites such as Twitter and

Facebook (Stone, 2010). Next generation techiques such as text field injection, content

extraction, HTML source extraction and forced drag-and-drop are considered possible

(Stone, 2010). Build upon clickjacking , these attacks represent serious threats to many

types of web applications.

The Information Security Organization of ACC Corporation decided to analyze

different methods of mitigating clickjacking vulnerabilities and to implement the most

effective one.

!
!

Author!Name,!email@address! ! !

2. Effective Frame Busting
2.1. X-Frame-Options

A study of frame busting practices for the Alexa Top-500 sites showed that all

techniques can be circumvented in one way or another (Rydstedt, Bursztein, Boneh, &

Jackson, 2010). The same study reccomended “.. a JavaScript-based defense to use until

browser support for a solution such as X-FRAME-OPTIONS is widely deployed”.

The HTTP Response header X-Frame-Options is used to control whether or not a

browser should be allowed to render a page in a frame or an iframe (Shahar, 2013).

There are two basic options:

DENY – The page cannot be displayed in a frame

SAMEORIGIN – The page can only be displayed in a frame on the same origin as the
page itself.

A study which analyzed security headers of the top 1,000,000 websites reported that on

March 10, 2013 the X-Frame-Options headers was the most popular of the security

headers (Dawson, 2013)(Figure 4). The same study reported that SAMEORIGIN is by far

the most common setting, followed by DENY (Figure 5). SAMEORIGIN ensures a good

balance between protection from “clickjacking” and web-design flexibility.

 Figure 4

!
!

Author!Name,!email@address! ! !

 Figure 5

The following browsers support the X-Frame-Options headers (Shahar, 2013).

Browser Chrome FireFox IE Opera Safari
Version 4.1.249.1042 3.6.9 (1.9.2.9) 8 10.5 4.0

The X-Frame-Options header can be set by the web application, a web server, or a

network appliance. We will focus on the process of setting the “X-Frame-Options”

header using BIG-IP LTM from F5 (Local Traffic Manager). This device features

network-side scripting iRules (Pruitt). It takes one line of TCL based iRule to set the X-

Frame-Options header for every response:

when HTTP_RESPONSE { HTTP::header insert "X-FRAME-OPTIONS" “SAMEORIGIN)”}

This solution is sufficient for most applications but not for all. ACC engineers deployed

the “framebusting” iRule as a pilot for the user account management application

https://usersecure.acc.com and discovered that many ACC hosted applications are

framing https://usersecure.acc.com. Using the “SAMEORIGIN” value broke existing

functionality.

A typical multi-national corporation such as ACC, hosts 70 – 80 web applications. Many

of these applications randomly frame each other, making DENY and SAMEORIGIN

inappropriate values for the X-Frame-Options header.

!
!

Author!Name,!email@address! ! !

2.2. ALLOW-FROM X-Frame Options Value
Fortunately, X-Frame-Options can have a third value:

ALLOW-FROM uri - The page can only be displayed in a frame on the specified origin

The following browsers support the ALLOW-FROM directive:

Browser Chrome FireFox IE Opera Safari
Version Not supported 18.0 8 Not Supported Not supported

The "ALLOW-FROM" directive supports only one URI. It does not support a list of

URIs or wildcard characters. This restriction prevents a protected application from being

framed by more than one URI, unless "ALLOW-FROM" can be changed dynamically.

In cases when the web application wants to allow more then one URI to frame its content,

the folowing design can be used (D. Ross, 2013):

1. If web application A wants to render the requested content inside a frame, it provides

its own origin information via a query string parameter to the web application B

serving the to-be-framed content.

2. The application B verifies that the origin meets its criteria so the page can be allowed

to be framed by the application A. The verification may happen via a search of a

white-list of trusted URIs that allowed framing the application B content.

3. After successfully completing verification, the application B returns the URI in X-

FRAME-OPTIONS: ALLOW-FROM header.

4. If a browser supports ALLOW-FROM directive, it enforces the X-FRAME-

OPTIONS: ALLOW-FROM header that was set in step #3.

ACC engineers implemented the described scenario by writing a “framebuster” iRule

running on an F5 LTM device v11.2.1. The following definitions are used in the

“framebuster” iRule:

• outerframe - a page that wants to render the content inside a frame (D. Ross, 2013)

• innerframe – the to-be-framed content

!
!

Author!Name,!email@address! ! !

 The origin of the outerframe page is set by the outerframe application via a query string

parameter or session cookie. The outerframe value is a key to a hash table containing

origin URIs. Table 1 summarizes “framebuster” iRule actions.

HTTP Request HTTP Response
outerframe parameter outerframe cookie X-Frame-Options outerframe cookie

null Null sameorigin null
a Null https://a.acc.com a

null b https://b.acc.com null
a b https://a.acc.com a

 Table 1

 “framebuster” iRule Truth Table

An HTTP request can contain an outerframe parameter, outerframe cookie or both.

Depending on this combination, the “framebuster” iRule sets the X-Frame-Options

header with different values. An outerframe parameter takes precedence over an

outerframe cookie. Same iRule also sets an outerframe cookie in response.

F5 offers an Application Security Manager™ (ASM) product. ASM is a Web Application

Firewall. Starting with version 11.3, ASM can be configured to set X-Frame-Options

header. Currently this feature is limited to one static URI.

2.3. The Outerframe Parameter Forgery
 The solution presented above is immune to an outerframe query string parameter

forgery attempts. Listed below are two cases:

1. In the first case a malicious website www.evil.net will load a page https://a.acc.com

from the ACC website inside a frame and set a query string outerframe parameter

outerframe=www.evil.net

2. The “framebuster” iRule performs search against internal hash table containing origin

URIs.

3. The search returns nothing and iRule will set header X-Frame-Options

=SAMEORIGIN

4. A browser displays the message “This content cannot be displayed in a frame” and

attack will fail (Figure 6).

!
!

Author!Name,!email@address! ! !

<iframe(src=https://a.acc.com/index.jsp?outerframe=www.evil.net(</iframe>

X>Frame>Options:(SAMEORIGIN

www.evil.net
a.acc.com

“This&content&cannot&be&displayed&in&a&frame”&

 Figure 6

A second case of an outerframe parameter forgery attempt can look like this:

1. A malicious website www.evil.net will load a page a.acc.com from the ACC website

inside a frame and set a query string parameter outerframe=b

2. Application B is on the list of applications that can frame web application A. The

“framebuster” iRule performs lookup and fetches the URI of application B.

3. The same iRule will set header X-Frame-Options= ALLOW-FROM https://b.acc.com

4. A browser sees the mismatch between outerframe origin information

(https://www.evil.net) and URI https://b.acc.com set by the application A iRule in

X-Frame-Options header and displays the message “This content cannot be displayed

in a frame” (Figure 7).

!
!

Author!Name,!email@address! ! !

<iframe(src=https://a.acc.com/index.jsp?outerframe=b(</iframe>

X<Frame<Options:(ALLOW<FROM(https://b.acc.com

www.evil.net
a.acc.com

“This&content&cannot&be&displayed&in&a&frame”&

 Figure 7

2.4. Nested Frames
A majority of ACC web applications can be categorized as either – innerframe or

outerframe. There are a small number of applications that can be both, because they

render content in a frame while simultaneously serve to-be-framed content. In this case

we are dealing with nested frames. Figure 8 illustrates this relationship.

<iframe(src=https://c.acc.com/index.jsp?outerframe=b(</iframe>

X<Frame<Options:(ALLOW<FROM(https://a.acc.com

X<Frame<Options:(ALLOW<FROM(https://b.acc.com

<iframe(src=https://b.acc.com/index.jsp?outerframe=a(</iframe>

a.acc.com
b.acc.com
c.acc.com

 Figure 8

Application A frames application B, which in turn frames application C. If the

framebusting iRule is set on B and C URIs the following will happen:

!
!

Author!Name,!email@address! ! !

1. Application A renders the content of application B in a frame with query string

parameter outerframe=a.

2. Application B serves the content and the “framebuster” iRule sets the header

X-Frame-Options = ALLOW-FROM https://a.acc.com and browser displays B

content in the frame

3. Application B in turn frames the content of application C with query string parameter

outerframe=b

4. Application C serves a content and “framebuster” iRule sets the header to

X-Frame-Options = ALLOW-FROM https://b.acc.com

5. Browser sees the mismatch between top-frame origin information (https://a.acc.com)

and URI https://b.acc.com set by the application C iRule in X-Frame-Options header

and displays the message “This content cannot be displayed in a frame” .

One way to resolve this problem is to remove the framebusting iRule from web

application C. In this case all nested frames will be presented, but application C will be

vulnerable to clickjacking.

Applications B and C can be protected by enhancing application B. Application B

will determine whether it is running in a frame. If it is, application B will not set an

outerframe parameter or an outerframe cookie while rendering application C content in a

frame. In this case, application C iRule will set the X-Frame-Options header based on the

outerframe cookie set by the top application A. The browser will then have no difficulty

displaying content C in a frame. Figure 9 illustrates that.

!
!

Author!Name,!email@address! ! !

X"Frame"Options:0ALLOW"FROM0https://a.acc.com

<iframe0src=https://b.acc.com/index.jsp?outerframe=a0</iframe>

a.acc.com
b.acc.com
c.acc.com

 Figure 9

It is not trivial for application B to determine if it is running in a frame, nothing in the

requests indicates that. The outerframe session cookie can still be used as a marker that

application B is already framed. However this is not 100% reliable. An outerframe cookie

could have been set by application D, for example, during previous session. The most

reliable approach is to use a small snippet of JavaScript code to determine if application

B is framed. This check will take place at the beginning of the session, and a session

variable will be set as a reminder that application B content is rendered in a frame.

3. Conclusion
The framebusting technique described in this paper was successfully implemented at

the ACC production environment for half-a-dozen applications. Security engineering was

spearheading the deployment of “framebuster” iRule for selected applications front-

ended by F5 BIG-IP™ Load Balancer. The process of setting and configuring the iRule

does not involve an application development team. As a result the clickjacking protection

for ACC applications is centralized, can be easily deployed and requires only minor

application code change.

!
!

Author!Name,!email@address! ! !

4. References
Rydstedt, G., Bursztein, E., Boneh, D., & Jackson, C. (2010). Busting frame busting: a

study of clickjacking vulnerabilities at popular sites. in IEEE Oakland Web 2.0
Security and Privacy (W2SP 2010).

!
Maas, T. (2013, April). Clickjacking. Retrieved from www.owasp.org:

https://www.owasp.org/index.php/Clickjacking
!
Pruitt, J. (n.d.). Introduction to iRules. Retrieved from DevCentral:

https://devcentral.f5.com/tech-tips/articles/irules-101-01-introduction-to-irules
!
D. Ross, T. G. (2013, July 15). HTTP Header Field X-Frame-Options. Retrieved from

IETF Tools: http://tools.ietf.org/html/draft-ietf-websec-x-frame-options-05
!
Dawson, I. (2013, March). Security Headers on the Top 1,000,000 Websites: March 2013

Report. Retrieved from VERACODE:
http://www.veracode.com/blog/2013/03/security-headers-on-the-top-1000000-
websites-march-2013-report/

!
Stone, P. (2010, April 14). Next Generation Clickjacking. Retrieved from CONTEXT

Information Security: http://www.contextis.co.uk/files/Context-
Clickjacking_white_paper.pdf

!
Shahar,!R.!(2013,!August!26).!The$X&Frame&Options$response$header.!Retrieved!from!

Mozilla!Developer!Network:!https://developer.mozilla.org/enV
US/docs/HTTP/XVFrameVOptions!

!

