
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Penetration Testing, Exploit Writing, and Ethical Hacking (Security 660)"
at http://www.giac.org/registration/gxpn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gxpn

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification

GIAC (GXPN) Gold Certification

Author: Jeremy Druin, jdruin@gmail.com

Advisor: Hamed Khiabani, Ph.D.

Accepted: April 10th, 2018

Abstract

Cryptanalysis concepts like CBC Bit-flipping can be difficult to grasp through study alone.

Working through "hands-on" exercises is a common teaching technique intended to assist, but

freely available training tools may not be readily available for advanced web application

penetration testing practice. To this end, this paper will describe CBC bit-flipping and offer

instruction on trying this cryptanalysis technique. Also, a CBC bit-flipping game will be

provided within the OWASP Mutillidae II web application. Mutillidae is a large collection of

deliberately vulnerable web application challenges designed to teach web security in a stand-

alone, local environment.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 2

Jeremy Druin, jdruin@gmail.com

1. Introduction

Cryptographic systems or cryptosystems may be categorized into three types:

Asymmetric, symmetric and hash functions (BEHRENS, 2014). Unlike hash functions, the other

two allow the data to be easily recovered as long as the recipient has the proper key (Mehmood,

2017). Asymmetric or "public key" systems utilize two encryption keys, one private and one

public, to encrypt and decrypt respectively (Microsoft, 2017). In symmetric cryptosystems, the

same key is used for encryption and decryption (Figure 1) (TYSON, 2018).

Figure 1: Symmetric key encryption

Symmetric encryption systems may use "block" or "stream" ciphers (Young, 2018)

 . Block ciphers accept, encipher, decipher and output a fixed number of bits. Stream

ciphers encrypt or decrypt one bit at a time. Symmetric block ciphers offer various modes of

operation that decide how the data is encrypted. The same block cipher can encrypt the data

using different techniques. Some modes can even transform a block cipher into a stream cipher.

These modes provide flexibility in how block ciphers transform the data (Dworkin, 2001).

1.1. What is cipher block chaining?

Cipher Block Chaining (CBC) is one mode available to block ciphers. Other modes

include Electronic Codebook (ECB), Cipher Feedback (CFB), Output Feedback (OFB) and

Counter Mode (CTR) (Kowalczyk, 2017).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 3

Jeremy Druin, jdruin@gmail.com

1.1.1. Modes of Operation

Electronic Codebook mode might be thought of as a null mode. Besides encryption with

the symmetric key, no additional transformation occurs (Thijssen, 2010). Each block of plaintext

is encrypted independently. Also, the plaintext is not mixed with any additional data. This

simplistic mode encrypts each block of plaintext with the key and outputs the ciphertext as-is. In

Figure 2, the phrase "sans" is repeated 8 times then encrypted in 128-bit1 blocks using Advanced

Encryption Standard (AES). The two lines of ciphertext output are identical because they were

produced by encrypting the same input with the same key.

Figure 2: Encryption of data with recurring characters using Electronic Codebook (ECB) mode

results in a repetitive ciphertext

Other modes incorporate data besides the key to further scramble the plaintext. Cipher

Block Chaining (CBC) performs an exclusive-or (XOR) operation on the current plaintext block

and the previously encrypted block (Tutorials Point, 2018). This mixing happens before

encrypting the current block. The external source of data (from the current block point of view)

acts like the salt used in hashing schemes (Morris & Thompson, 1978). The first block of

plaintext presents a special case since no previously encrypted block exists. An Initialization

Vector (IV) is provided to prime the pre-encryption operation (Barker & Barker, 2016).

Cipher Feedback (CFB) and Output Feedback (OFB) modes are similar to CBC except

the characters in the prior block are encrypted rather than the plaintext. The result is then XORed

with the current plaintext block to produce the current ciphertext block (Bunzel, 2018). These

variants are desirable when it is convenient to have the underlying block cipher encrypt less than

a full block of plaintext per encryption cycle (Hudde, 2009).

One mode combines the salting feature of CBC mode while operating on each block

separately like ECB mode. Counter Mode (CTR) does not rely on output from previous

1 The character encoding is ASCII-Extended which requires 8-bits (1 byte) per character.

Encryption is occurring in blocks of 16 characters.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 4

Jeremy Druin, jdruin@gmail.com

operations. Instead, an unpredictable number-used-once or "nonce" acts as the salt for the first

block (Gerard, 2018). The nonce is incremented each encryption cycle before it is used. This

"counter" provides uniqueness but allows each block to be encrypted and decrypted

autonomously. (Rogaway, 2011).

1.1.2. Failings of Electronic Codebook

In Electronic Codebook (ECB) mode, the plaintext block is encrypted to produce the

ciphertext block independent of any other block (IBM, 2018). If a plaintext block contains the

same plaintext as another, an identical ciphertext block will be created (Figure 2). This

redundancy provides opportunities for attacks.

Figure 3: Symmetric Encryption - Electronic Codebook (ECB) Mode

For example, plaintext blocks can be substituted or replayed without knowing the

contents (Sharma, 2007). Also, any previously cracked block betrays all identical ciphertext

blocks (Crowley, 2013). In some cases, such as encrypting images, the image pattern can leak

into the ciphertext (abpolym, 2015).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 5

Jeremy Druin, jdruin@gmail.com

Identical plaintext is common in network communications. Many messages have well-

known headers opening ECB-mode encrypted ciphertext to chosen plaintext attack (Chaudhary,

2014). Networking protocols such as Address Resolution Protocol and Hypertext Transport

Protocol contain predictable headers found at the start of each network packet (Plummer, 1982)

(Fielding & Reschke, 2014). These packets and their associated headers are transmitted many

times until the entire message is sent.

1.1.3. Improvement over ECB

Cipher block chaining (CBC) offers advantages of Electronic Codebook mode. Each

block of plaintext is mixed with the previous block of ciphertext (Figure 4). The pre-encryption

XOR operation alleviates identical ciphertext blocks; even when the same plaintext is encrypted

with the same key2.

Figure 4: Symmetric Encryption - Cipher Block Chaining (CBC) Mode

2 This assumes best-practice is followed. An initialization vector must never be reused with a

given key (Gordon, 2015).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 6

Jeremy Druin, jdruin@gmail.com

Since the first ciphertext block has no predecessor, an initial random value stands in for

the first ciphertext block. This "initialization vector" (IV) provides the randomness needed to

ensure identical plaintexts do not encrypt to repetitive ciphertexts. While it is not necessary to

keep the IV secret since its only function is to introduce distinctiveness into the ciphertext, it is

critical the IV be as unpredictable as possible (Diana-Lynn Contesti, 2007). The IV is provided

to the recipient along with the ciphertext so the first block can be decrypted (D.I. Management

Services Pty Ltd, 2001).

1.2. What is CBC bit-flipping?

CBC improves the integrity of the ciphertext by doing away with the repeated patterns in

the plaintext. Also, exchanging, replicating or deleting ciphertext will corrupt at least one block

of the message (Focardi, 2014). However, the exclusive-or (XOR)3 operation is linear. Changing

one bit of ciphertext in a previous block has a predictable consequence on the respective bit in

the current block of plaintext (Regalado, 2013).

1.2.1. Exclusive-Or

As a logical operation, XOR follows the rules expressed in Table 1. If the two inputs are

different, the result is True but otherwise False (Electronics Tutorials, 2018). Assuming False is

encoded as 0 and True as 1, the operation outputs bits as prescribed in Table 2.

Table 1: Truth Table for Exclusive-Or

A B A  B

False False False

False True True

True False True

True True False

3 The exclusive-or (XOR) operation is represented by the symbol  (Addition symbol "plus"

embedded in a circle)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 7

Jeremy Druin, jdruin@gmail.com

Table 2: Result of Exclusive-Or operation on bits

A B A  B

0 0 0

0 1 1

1 0 1

1 1 0

Exclusive-Or can be implemented as addition modulo 2 (Germundsson, 2002). For the

first 3 rows of Table 2, addition works regardless of modulo (i.e. 0 + 0 = 0, 0 + 1 = 1…). In row

4, (1 + 1) mod 2 = 2 mod 2 = 0. Alternatively, one of the two input bits can be thought of as a

switch that decides whether the second bit should change. For 0  1, the first bit has a value of

zero which indicates we should leave the second bit alone. "1" is output. For 1  1, the first bit

has a value of one telling us to change the second bit. The answer is "0".

1.2.2. Bit-flipping

When considering CBC, it may be more convenient to think in terms of the switch

analogy. In the first two rows of Table 2, the first bit "A" is 0 so the second bit "B" is output as-

is. In the third and fourth rows of Table 2, the first bit "A" is 1 so the opposite of bit "B" is

output. Regardless, note that changing bit "A" no matter the value of bit "B" always causes the

output to alternate or flip4 with respect to "B". Viewing the first bit as a switch dovetails nicely

with the attack. The attacker decides which bit(s) in the previous block to change. These "flips"

consistently cause the corresponding bits in the next block to change their value.

In CBC, the mixing of the plaintext and previous ciphertext block (or initialization

vector) occurs prior to encryption (Figure 4). Exclusive-Or respects bit order when operating on

blocks. The first bit of prior ciphertext is XORed with the first bit of plaintext, etc. If bit 3 of the

previous ciphertext (or IV) is switched, bit 3 of the plaintext will be flipped prior to encryption

(Figure 5).

4 The term "flip" may refer to turning over a coin so head becomes tails or vice versa

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 8

Jeremy Druin, jdruin@gmail.com

Figure 5: CBC Bit-flipping

The consequence of bit-flipping on an actual application is highly contextual. It depends

on how the application decodes and interprets the affected bits, but the consequences can be

significant (GOODIN, 2016) (Marclass, 2015).

1.3. How might we learn about CBC bit-flipping?

Complex information security concepts may be easier to learn through experience

(Griffiths & Guile, 2004). "Gamification" is an interactive simulation in the form of a goal-

oriented challenge. Gamification is shown to increase awareness and interest in difficult notions

(Gjertsen, Gjære, Bartnes, & Flores, 2017). OWASP Mutillidae II is a deliberately vulnerable

web-application that uses gamification to teach web application security attacks and defenses

(Druin, OWASP Mutillidae II, 2018). A CBC bit-flipping challenge is included (Druin, Listing

of Vulnerabilities, 2018) .

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 9

Jeremy Druin, jdruin@gmail.com

2. The Game

2.1. OWASP Mutillidae II Web Application

OWASP Mutillidae II is a free, open source web application that implements over 40

web application vulnerabilities including multiple defects from each of the OWASP Top Ten list

(Druin, 2018). It is a training system that guides the user with hints that pop-up when the user

hovers over a vulnerable input parameter and context-sensitive tutorials built into each page.

Relevant instructional videos are linked from the bottom of each tutorial.

There are two learning modes: vulnerable ("Level 0"/"Level 1") and secure ("Level 5").

"Level 0" and "Level 1" implement identical vulnerable PHP source code which can be hacked5.

"Level 5" implements a different set of PHP source code that has been patched against the

respective vulnerability. The system is in "Level 0" by default (Figure 6).

Figure 6: Security Level

The following demos use "Level 0" exclusively. If needed, the level can be changed by

clicking "Toggle Security" (Figure 7).

Figure 7: Toggle Security button

2.2. Installation

A version of Mutillidae is pre-installed on the Samurai Web Testing Framework virtual

machine6. Mutillidae can be updated to the latest version by copying the latest scripts over the

5 "Level 1" layers on several client-side "security controls"
6 https://sourceforge.net/projects/samurai/files/SamuraiWTF%203.0%20Branch/

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 10

Jeremy Druin, jdruin@gmail.com

existing7. Also, the source is available on SourceForge8. The project may be installed on Linux

Ubuntu using LAMP9 or Windows on XAMPP10.

2.3. Solving the CBC bit-flipping Challenge

2.3.1. Understanding the goal

The challenge is implemented within the "View User Privilege Level" page. On the left

menu, click "OWASP 2017"  "A2 - Broken Authentication and Session Management" 

"Privilege Escalation"  "Via CBC bit-flipping" (Figure 8). The page will load (Figure 9).

Figure 8: Menu to View User Privilege Level page

7 https://www.youtube.com/watch?v=uQ2lr0TIiqE
8 https://sourceforge.net/projects/mutillidae/files/mutillidae-project/
9 https://sourceforge.net/projects/mutillidae/files/documentation/mutillidae-installation-on-

ubuntu.txt/download
10 https://sourceforge.net/projects/mutillidae/files/documentation/mutillidae-installation-on-

xampp-win7.pdf/download

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 11

Jeremy Druin, jdruin@gmail.com

Figure 9: View User Privilege Level page

By default, the "User ID" and "Group ID" displayed will be "100" (Figure 9)11. The

challenge is to set both the "User ID" and "Group ID" to "000" using a CBC bit-flipping attack.

Both fields are close to the target value. Only the leading "1" needs to be changed to a "0".

Figure 10: User and Group IDs

11 If the player would like to attempt a more difficult scenario, security "Level 1" implements

"User ID" of "174" and "Group ID" of "235"

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 12

Jeremy Druin, jdruin@gmail.com

2.3.2. How to locate the vulnerable bytes

To attempt a CBC bit-flip attack on a given block, except for the first block, any previous

block of ciphertext can be targeted (Figure 4). To manipulate the first block, the initialization

vector has to be targeted. Each input on the page needs to be inspected to determine if the

parameter provides an opportunity to influence some block.

When first approaching the page, it is not clear if an attack vector is exposed to the client

although one parameter is suspicious. Inspection of the URL shows a query parameter named

"iv" with a value "6bc24fc1ab650b25b4114e93a98f1eba" (Figure 11). The same parameter can

be seen in Burp-Suite12 13 (Figure 12).

Figure 11: Parameter "iv" in the URL

Figure 12: Parameter "iv" shown in Burp-Suite14

There does not appear to be any other input parameter that could have an effect on either

the IV or a block of ciphertext. Also, the parameter name is dubious. "Pareto tests"15, trying only

the input most likely to confirm the correct variable, are warranted to verify "iv". If these quick

12 Burp-Suite Community Edition 1.7.30 on Ubuntu 16.04.3 LTS was used for demonstration
13 Please refer to Appendix A for video tutorials on Burp-Suite
14 Proxy  HTTP History, click the request, select Request tab  Params tab
15 Vilfredo Pareto noted in the context of economics that about 20% of the input leads to 80% of

results (Investopedia, 2018). The principle also applies to results relative to effort.

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 13

Jeremy Druin, jdruin@gmail.com

tests are inconclusive, methodical testing can be done. This test can be done formally or

informally using manual methods or automated tools.

To test informally using a manual method, the first character or two of the "iv" field can

be changed. Because the test is informal, the first two characters can be set to an arbitrary value

and resubmitted. "00" is used in this example. Any change in output may indicate the "iv"

parameter is a viable target. Indeed, the value of Application ID changes from "A1B2" to "*1B2"

(Figure 13). Since there are only 32 characters in the "iv" parameter, manual analysis works well

even if all positions need to be tested.

Figure 13: Application ID changes when "iv" parameter manipulated

The remaining bytes are mapped by changing pairs of characters in the IV to "00", observing the

page output, and recording the results.

Formal testing can be done with Burp-Suite Community Edition16 17. The request is

intercepted in Burp-Suite Proxy tool (Figure 14) then sent to the Burp-Suite Repeater tool where

it is replayed (Figure 15). To ensure that replaying the HTTP request did not result in an

unexpected response18, the response from the intercepted request is compared against the

response from the repeated request using the Burp-Suite Comparer tool. No significant

16 https://portswigger.net/burp/communitydownload
17 Please see Appendix A for links to video tutorials prepared for each of the Burp-Suite features

referenced
18 For example, if the site employed cross-site request forgery (CSRF) tokens valid for only one

request

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 14

Jeremy Druin, jdruin@gmail.com

difference is found (Figure 16). This indicates requests can be repeated with minimal risk of

invalid responses.

Figure 14: HTTP request for the page is intercepted in Burp-Suite Proxy tool

Figure 15: HTTP request for the page is sent to Burp-Suite Repeater tool

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 15

Jeremy Druin, jdruin@gmail.com

Figure 16: HTTP responses are compared to ensure requests are repeatable

The Character Frobber attack found in the Burp-Suite Intruder tool is designed to swiftly

check if characters in a lengthy string impact how an application handles input (Portswigger,

2018). During the test, Burp-Suite sends one HTTP request for each character in the value of the

"iv" parameter. The respective character is "incremented" before sending each request so that 6

becomes a 7, "b" becomes "c" and so on (PortSwigger, 2018). There are 32 characters in the

value of "iv" so 32 unique requests are sent. The "Grep - Extract" feature can display the

Application ID for each request to make changes in the Application ID easier to spot (Figure

17).

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 16

Jeremy Druin, jdruin@gmail.com

Figure 17: The Grep -Extract feature show the impact of changing the "iv" input parameter on

the "Application ID" field

In the first request, the value of the Application ID is "A1B2"; the default value. In the second

request, Burp changed the first character of the IV from 6 to 7. The Application ID changed to

"Q1B2". This implies the "iv" parameter is the initialization vector sought. Requests 2 - 7

provide additional evidence.

The test also suggests the IV is encoded as hexadecimal digits. The effects of character

frobbing wear off once Burp moves on to characters 9 - 32 (Figure 17). The Application ID is

only influenced if the first 8 characters are altered and the IV is made of 0-9/A-F. Assuming

each pair of letters in the IV is a byte, the first letter of the Application ID corresponds to the first

byte of the IV, the second letter to the second byte, etc. The information gathered so far is

summarized in Table 3.

Table 3: Bytes of Initialization Vector by Position and Effect

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value 6b c2 4f c1 ab 65 0b 25 b4 11 4e 93 a9 8f 1e ba

Effect A 1 B 2 ? ? ? ? ? ? ? ? ? ? ? ?

Affected

Field

Name

Application ID ? ? ? ? ? ? ? ? ? ? ? ?

Changes in

the "iv"

parameter are

reflected in

the

Application

ID

"iv" parameter

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 17

Jeremy Druin, jdruin@gmail.com

Manipulating characters 9 - 32 did not impact the Application ID but may have affected other

output. The boundary of character 8 and 9 can be tested with the Comparer tool19 or by looking

at each HTTP response in a new window20. The comparison shows IV-character 8 affects the end

of the Application ID and the IV-character 9 does the same for the first number in the User ID

(Figure 18).

Figure 18: Comparison of the effect of manipulating character 8 and 9 in the IV

Opening each response for manual comparison is tedious. The User ID and Group ID

fields can be added to Grep - Extract for easy comparison. The output shows IV-characters 9 and

10 (IV byte 5) map to the first digit in the User ID (Figure 19). Similarly, IV-characters 15 and

16 (IV byte 8) map to the first digit in the Group ID (Figure 20). Recall these are the two digits

need to be changed to "0" to win the game (Figure 10). Table 4 updates how each byte of the IV

19 Highlight rows 8 and 9 in the Intruder Attack window (Figure 17), right-click and select

"Send to Comparer (Responses)".
20 Double-click on row 8 and 9 respectively in the Intruder Attack window (Figure 17), click the

Response tab, search for "Application ID" (Figure 18)

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 18

Jeremy Druin, jdruin@gmail.com

maps to the digits of the Application ID, User ID, and Group ID. The targeted IV bytes 5 and 8

are highlighted.

Figure 19: IV-characters 9 and 10 influence the first digit of the User ID

Figure 20: IV-characters 15 and 16 influence the first digit of the Group ID

Table 4: Bytes of Initialization Vector by Position and Effect

Position 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Value 6b c2 4f c1 ab 65 0b 25 b4 11 4e 93 a9 8f 1e ba

Effect A 1 B 2 1 0 0 1 0 0 ? ? ? ? ? ?

Affected

Field

Name

Application ID User ID Group ID ? ? ? ? ? ?

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 19

Jeremy Druin, jdruin@gmail.com

2.3.3. How to modify the vulnerable bytes to win

The two IV bytes identified (Table 4) can be altered manually until the User ID and

Group ID read "000". The bytes are encoded as ASCII hex so there are 256 values for each byte

ranging from 00 to FF. However, switching the value and resubmitting the URL up to 512 times

could be tiresome. Burp-Suite can try all possible values of each byte (Figure 21); however, the

Community Edition throttles the Intruder (PortSwigger, 2016). Without the "Pro" license, the

Intruder operates too slowly when fuzzing with more than about 25 values.

Figure 21: Burp-Suite Intruder Brute-Force payload configured to try ASCII hex values 00 - FF

The OWASP Zed Attack Proxy (ZAP) 21 is a free interception proxy that contains a

versatile fuzzing tool (McRee, 2011) 22. A new ZAP Fuzzer is opened. IV byte 5 which has a

default value of "ab" for is prepared for fuzzing. To send all possible values, the digits "a" and

"b" are selected independently and configured so that values 0-9 and a-f will be injected (Figure

22 - 1). Sixteen values are inserted into each digit for a total of 256 combinations (Figure 22 -

2).

21 OWASP ZAP Download: https://github.com/zaproxy/zaproxy/wiki/Downloads
22 Please refer to Appendix B for video tutorials on notable OWASP ZAP features

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 20

Jeremy Druin, jdruin@gmail.com

Figure 22: Using OWASP ZAP Fuzzer to inject all hex digits

The fuzzing results appear in the ZAP Fuzzer output window (Figure 23). Somewhere

within is an HTTP response with a value of "000" for the User ID. The ZAP Search feature can

locate strings inside the fuzz results. Inspection of the User ID output23 shows the value is within

an HTML table data element <td style="text-align: left;">100 (Hint: 0X31 0X30 0X30)</td>.

A search pattern such as "<td style="text-align: left;">000" or just ">000" is enough to locate the

corresponding HTTP response (Figure 24).

Figure 23: Results from OWASP ZAP Fuzzer injecting all combinations of two hex digits into IV

byte 5

23 The View Source feature of the browser can show the HTML or the HTTP response can be

viewed in Burp-Suite or OWASP ZAP

1

2

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 21

Jeremy Druin, jdruin@gmail.com

Figure 24: (1)(2) Using the "Search" feature of OWASP ZAP to locate fuzzing result with a User

ID of "000". (3) The corresponding HTTP request shows the IV that produced the User ID. (4)

The injected byte was "aa" (0XAA).

The digits needed in IV byte 8 to cause the Group ID to equal "000" is determined using

the same method. Fuzzing will show the default value of 0x25 must be changed to 0x24. The

"iv" parameter in the URL is updated with 6bc24fc1aa650b24b4114e93a98f1eba, then the page

is submitted to the server. The User ID and Group ID fields match "000", so the game is won

(Figure 25).

Figure 25: Bytes 5 and 8 are updated to cause the User ID and Group ID to equal "000". The

web page outputs "User is Root!" indicating the game is won.

1

2

3
4

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 22

Jeremy Druin, jdruin@gmail.com

3. Conclusion

Training environments like Mutillidae II and Damn Vulnerable Web Application

(DVWA)24 provide safe environments to practice complex penetration testing tasks. Particularly

abstract concepts like CBC bit-flipping can be easier to learn by experience. The game provided

allows the user to work through two bit-flipping challenges: one for novices and another

requiring intermediate skill. Also, the game in Mutillidae lets the user practice remediating the

vulnerability. Mutillidae also shows the user how to fix the issue. In "Security Level 5",

Mutillidae does not accept an initialization vector from the user. The IV is stored server-side and

any input from the user is ignored.

Mutillidae chooses to remediate the bit-flipping vulnerability by preventing the user from

changing the initialization vector. Because the IV can be private to the server in this use-case,

keeping the IV from the user works well to fix the issue. In many cases, the IV must be changed

frequently and/or passed between systems. In systems where the IV is only required to be unique

and unpredictable, the integrity must be protected (Dworkin, 2001). The sender can provide a

Message Authentication Code (MAC) for the encrypted message (Encrypt-then-MAC) or use

encryption that includes authentication such as AES-GCM (Ducklin, 2013).

Other games are available to help learn other security penetration testing and secure

application development concepts. Mutillidae and DVWA have many other web application

security challenges. VulnHub provides vulnerable virtual machines with "boot2root" games in

which a participant uses operating system and network service vulnerabilities to practice

penetration testing (g0tmi1k, 2018). Several sites list practice systems and sites are available25 26

27 giving students of information security many scenarios and contexts to hone skills (Vonnegut,

2015) (Edwards, 2017) (Shukla, 2014). These systems help learn concepts that can be

challenging to learn through academic study alone. They also provide "hands-on" exercises in a

safe but realistic environment giving students an invaluable resource that might otherwise not be

offered.

24 http://www.dvwa.co.uk

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 23

Jeremy Druin, jdruin@gmail.com

Appendix A: Video Tutorials for Notable Burp-Suite Features

Title URL

How to Install Burp Suite on Linux https://www.youtube.com/watch?v=OsSPwe-DUOU

Introduction to using the Burp-Suite
Targets Tab

https://www.youtube.com/watch?v=q3iG7YMjcmE

Introduction to Web Request and
Response Interception with Burp-Suite

https://www.youtube.com/watch?v=qsE04AhlJrc

Introduction to Burp-Suite's Repeater
Tool

https://www.youtube.com/watch?v=IstpobN5azo

Introduction to Burp-Suite Intruder's
Character Frobber Payload

https://www.youtube.com/watch?v=7vWTEbOfa-8

Introduction to Burp-Suite Intruder's
"Grep Extract" Feature

https://www.youtube.com/watch?v=t0uMReqs8Ng

Introduction to Burp-Suite Comparer
Tool

https://www.youtube.com/watch?v=KxqY_bp13gc

Appendix B: Video Tutorials for Notable OWASP ZAP
Features

Title URL

How to Install OWASP Zap on Linux https://www.youtube.com/watch?v=MpuFW_mkJ3M

How to Proxy Web Traffic through
OWASP ZAP

https://www.youtube.com/watch?v=ICPqz1Al9fk

How to Spider a Web Site with OWASP
ZAP

https://www.youtube.com/watch?v=pGCBivHNRn8

How to Intercept HTTP Requests with
OWASP ZAP

https://www.youtube.com/watch?v=fa5LAfXmwoo

How to Fuzz Web Applications with
OWASP ZAP (Part 1)

https://www.youtube.com/watch?v=uSfGeyJKIVA

How to Fuzz Web Applications with
OWASP ZAP (Part 2)

https://www.youtube.com/watch?v=tBXX_GAK7BU

25 https://www.checkmarx.com/2015/04/16/15-vulnerable-sites-to-legally-practice-your-hacking-

skills/
26 https://www.bonkersabouttech.com/security/40-plus-list-of-intentionally-vulnerable-websites-

to-practice-your-hacking-skills/392
27 https://wheresmykeyboard.com/2016/07/hacking-sites-ctfs-wargames-practice-hacking-skills/

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 24

Jeremy Druin, jdruin@gmail.com

References

abpolym. (2015, 3 25). tinyCTF 2014: ECB, it’s easy as 123. Retrieved from GitHub:

https://github.com/ctfs/write-ups-2014/tree/master/tinyctf-2014/ecb-its-easy-as-123

Barker, E., & Barker, W. (2016, 8). Guideline for Using Cryptographic Standards in the Federal

Government. Retrieved from

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-175A.pdf

BEHRENS, M. (2014, 11 20). Understanding the 3 Main Types of Encryption. Retrieved from

Atomic Object: https://spin.atomicobject.com/2014/11/20/encryption-symmetric-

asymmetric-hashing/

Bhoge, J. P., & Chatur, D. P. (2014). Avalanche Effect of AES Algorithm. Retrieved from

International Journal of Computer Science and Information Technologies, Vol. 5:

http://ijcsit.com/docs/Volume%205/vol5issue03/ijcsit2014050394.pdf

Bunzel, A. F. (2018). Modes of Operation. Retrieved from Cryptography Academy:

https://cryptographyacademy.com/modes-of-operation/

Chaudhary, S. (2014, 3 16). Speeding Up WEP Hacking : ARP request replay attack. Retrieved 4

1, 2017, from Kali Tutorials: http://www.kalitutorials.net/2014/03/speeding-up-wep-

hacking-in-kali.html

Crowley, D. (2013, 1 17). Defeating AES without a PhD. Retrieved from SpiderLabs Blog:

https://www.trustwave.com/Resources/SpiderLabs-Blog/Defeating-AES-without-a-PhD/

D.I. Management Services Pty Ltd. (2001). Block Cipher Modes and Initialization Vectors.

Retrieved from CryptoSys API Library Manual:

https://www.cryptosys.net/manapi/api_blockciphermodes.html

Diana-Lynn Contesti, D. A. (2007). Official (ISC)2 Guide to the SSCP CBK. Boca Raton, Fl,

USA: Auerbach Publications.

Druin, J. (2012, 8 7). Introduction to CBC Bit-Flipping Attack, 1. (J. Druin, Editor, & J. Druin,

Producer) Retrieved 4 1, 2017, from YouTube - webpwnized Channel:

https://www.youtube.com/watch?v=TNt2rJcxdyg

Druin, J. (2017, 1 7). OWASP Mutillidae II Web Pen-Test Practice Application. (J. Druin,

Producer) Retrieved 4 1, 2017, from SourceForge:

https://sourceforge.net/projects/mutillidae/

Druin, J. (2017, 1 7). view-user-privilege-level.php. Retrieved from OWASP Mutillidae II Web

Pen-Test Practice Application:

https://sourceforge.net/p/mutillidae/git/ci/master/tree/view-user-privilege-level.php

Druin, J. (2018). Listing of Vulnerabilities. Retrieved from SourceForge:

https://sourceforge.net/projects/mutillidae/files/documentation/listing-of-vulnerabilities-

in-mutillidae.txt/download

Druin, J. (2018, 1 14). OWASP Mutillidae II. Retrieved from SourceForge:

https://sourceforge.net/projects/mutillidae/

Druin, J. (2018). OWASP Mutillidae II. Retrieved from SourceForge:

https://sourceforge.net/projects/mutillidae/

Ducklin, P. (2013, 2 7). Boffins ‘crack’ HTTPS encryption in Lucky Thirteen attack. Retrieved

from Naked Security by Sophos: https://nakedsecurity.sophos.com/2013/02/07/boffins-

crack-https-encryptionin-lucky-thirteen-attack/

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 25

Jeremy Druin, jdruin@gmail.com

Dworkin, M. (2001, 12). Recommendation for Block Cipher Modes of Operation. Retrieved from

NIST Special Publication 800-38A 2001 Edition:

http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

Edwards, B. (2017, 1 2). 40+ INTENTIONALLY VULNERABLE WEBSITES TO (LEGALLY)

PRACTICE YOUR HACKING SKILLS. Retrieved from Bonkers About Tech:

https://www.bonkersabouttech.com/security/40-plus-list-of-intentionally-vulnerable-

websites-to-practice-your-hacking-skills/392

Electronics Tutorials. (2018). Exclusive-OR Gate Tutorial. Retrieved from Electronics Tutorials:

https://www.electronics-tutorials.ws/logic/logic_7.html

Feltner, S. (2016, 12 28). Single-factor Authentication (SFA) vs. Multi-factor Authentication

(MFA). Retrieved 4 1, 2017, from CENTRIFY PERSPECTIVE:

http://blog.centrify.com/sfa-mfa-difference/

Fielding, R., & Reschke, J. (2014, 6 1). Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing. Retrieved 4 1, 2017, from PROPOSED STANDARD:

https://tools.ietf.org/html/rfc7230

Focardi, R. (2014). Block cipher modes. Retrieved from SecGroup Unive:

https://secgroup.dais.unive.it/teaching/cryptography/block-cipher-modes/

g0tmi1k. (2018). About Vulnhub. Retrieved from Vulnhub: https://www.vulnhub.com/about/

General. (2017, 4 1). Block cipher mode of operation. Retrieved 4 1, 2017, from Wikipedia, the

free encyclopedia:

https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation#Electronic_Codebook_.

28ECB.29

Gerard, N. (2018, 1 31). Cryptography - Nonce (Number Only used once). Retrieved from

Gerardnico: https://gerardnico.com/wiki/security/nonce

Germundsson, R. a. (2002). XOR. Retrieved from MathWorld - A Wolfram Web Resource:

http://mathworld.wolfram.com/XOR.html

Gjertsen, E. G., Gjære, E. A., Bartnes, M., & Flores, W. R. (2017). Gamification of Information

Security Awareness and Training. Retrieved from brage.bibsys.no:

https://brage.bibsys.no/xmlui/bitstream/handle/11250/2462736/ICISSP_2017-

gamification.pdf?sequence=2

GOODIN, D. (2016, 10 23). Using Rowhammer bitflips to root Android phones is now a thing.

Retrieved from Ars Technica: https://arstechnica.com/information-

technology/2016/10/using-rowhammer-bitflips-to-root-android-phones-is-now-a-thing/

Gordon, A. (2015). Official (ISC)2 Guide to the CISSP CBK, Fourth Edition. Boca Raton, FL:

CRC Press.

Griffiths, T., & Guile, D. (2004). Learning through work experience for the knowledge economy.

Luxembourg: Office for Official Publications of the European Communities.

Heaton, R. (2013, 7 29). The Padding Oracle Attack - why crypto is terrifying. Retrieved 4 1,

2017, from Rob Heaton: http://robertheaton.com/2013/07/29/padding-oracle-attack/

Hudde, H. C. (2009, 2 18). Building Stream Ciphers from Block Ciphers and their Security.

Retrieved from www.emsec.rub.de:

https://www.emsec.rub.de/media/crypto/attachments/files/2011/03/hudde.pdf

IBM. (2018). IBM Knowledge Center. Retrieved from Electronic Code Book (ECB) Mode:

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.csf

b400/csfb4429.htm

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 26

Jeremy Druin, jdruin@gmail.com

Investopedia. (2018). Pareto Principle. Retrieved from Investopedia:

https://www.investopedia.com/terms/p/paretoprinciple.asp

Kowalczyk, C. (2017). Block Ciphers Modes of Operation. Retrieved from Crypto-IT:

http://www.crypto-it.net/eng/theory/modes-of-block-ciphers.html

Laboratories, R. (2017, 1 1). 2.1.4.3 WHAT IS CIPHER BLOCK CHAINING MODE? (D. EMC,

Producer, & Dell EMC) Retrieved 4 1, 2017, from RSA Laboratories:

http://www.rsacertificate.com/emc-plus/rsa-labs/standards-initiatives/what-is-cipher-

block-chaining-mode.htm

Marclass. (2015, 6 25). Blog. Retrieved from MultiBit: https://multibit.org/blog/2015/07/25/bit-

flipping-attack.html

McRee, R. (2011, 11). OWASP ZAP – Zed Attack Proxy. Retrieved from Toolsmith:

https://holisticinfosec.org/toolsmith/pdf/november2011.pdf

Mehmood, A. (2017, 10 27). Differences between Hash functions, Symmetric & Asymmetric

Algorithms. Retrieved from Cryptomathic: https://www.cryptomathic.com/news-

events/blog/differences-between-hash-functions-symmetric-asymmetric-algorithms

Microsoft. (2017, 1 7). Description of Symmetric and Asymmetric Encryption. Retrieved from

Microsoft: https://support.microsoft.com/en-us/help/246071/description-of-symmetric-

and-asymmetric-encryption

Miles, E., & Viola, E. (2015, 8 20). Substitution-permutation networks, pseudorandom functions,

and natural proofs. Retrieved 4 2, 2017, from http://www.ccs.neu.edu:

http://www.ccs.neu.edu/home/viola/papers/spn.pdf

Morris, R., & Thompson, K. (1978, 4 3). Password Security: A Case History. Retrieved from

Internet Archive: https://web.archive.org/web/20130821093338/http://cm.bell-

labs.com/cm/cs/who/dmr/passwd.ps

Perrin, C. (2010, 2 1). The use and misuse of the XOR stream cipher. Retrieved from

TechRepublic: https://www.techrepublic.com/blog/it-security/the-use-and-misuse-of-the-

xor-stream-cipher/

Plummer, D. C. (1982, 11 1). An Ethernet Address Resolution Protocol. Retrieved 4 1, 2017,

from INTERNET STANDARD IETF: https://tools.ietf.org/html/rfc826

PortSwigger. (2016, 2 8). Burp Intruder Bruteforcing too slowly. Retrieved from PortSwigger:

https://support.portswigger.net/customer/portal/questions/16147440-burp-intruder-

bruteforcing-too-slowly

Portswigger. (2018). Payload Types. Retrieved from Portswigger Web Security:

https://portswigger.net/burp/help/intruder_payloads_types#charfrobber

PortSwigger. (2018). Payload Types - Character Frobber. Retrieved from PortSwigger:

https://portswigger.net/burp/help/intruder_payloads_types#charfrobber

Regalado, D. (2013, 8 22). CBC Byte Flipping Attack—101 Approach. Retrieved 4 1, 2017, from

InfoSec Institute: http://resources.infosecinstitute.com/cbc-byte-flipping-attack-101-

approach/#gref

Regalado, D. (2013, 8 22). CBC Byte Flipping Attack—101 Approach. Retrieved from InfoSec

Institute: http://resources.infosecinstitute.com/cbc-byte-flipping-attack-101-

approach/#gref

Rogaway, P. (2011, 2 10). Evaluation of Some Blockcipher Modes of Operation. Retrieved from

University of California, Davis Dept. of Computer Science:

http://web.cs.ucdavis.edu/~rogaway/papers/modes.pdf

© 20
18

 The S
ANS In

sti
tute,

 Author R
eta

ins F
ull R

ights

© 2018 The SANS Institute Author retains full rights.

Learning CBC Bit-flipping Through Gamification 27

Jeremy Druin, jdruin@gmail.com

Sharma, V. (2007, 11 27). Block Ciphers: Simple attack on ECB mode. Retrieved from Varun

Sharma's security blog:

https://blogs.msdn.microsoft.com/varun_sharma/2007/11/27/block-ciphers-simple-attack-

on-ecb-mode/

Shukla, T. (2014). 22 Hacking Sites, CTFs and Wargames To Practice Your Hacking Skills.

Retrieved from WheresMyKeyboard?: https://wheresmykeyboard.com/2016/07/hacking-

sites-ctfs-wargames-practice-hacking-skills/

Stallings, W. (2017, 1 1). Cryptography and Network Security Chapter 3. Retrieved 4 1, 2017,

from www.cs.man.ac.uk:

http://www.cs.man.ac.uk/~banach/COMP61411.Info/CourseSlides/Wk2.1.DES.pdf

The Linux Information Project. (2005, 7 22). User ID Definition. (T. L. Project, Producer)

Retrieved 4 1, 2017, from LINFO: http://www.linfo.org/uid.html

Thijssen, J. (2010, 12 8). Encryption operating modes: ECB vs CBC. Retrieved from A Day in

the Life of: https://adayinthelifeof.nl/2010/12/08/encryption-operating-modes-ecb-vs-cbc/

Titcomb, J. (2016, 3 22). Do you have one of the most common passwords? They’re ridiculously

easy to guess. Retrieved 4 1, 2017, from The Telegraph:

http://www.telegraph.co.uk/technology/2016/01/26/most-common-passwords-revealed---

and-theyre-ridiculously-easy-to/

Tutorials Point. (2018). Block Cipher Modes of Operation. Retrieved from Tutorials Point:

https://www.tutorialspoint.com/cryptography/block_cipher_modes_of_operation.htm

TYSON, J. (2018). How Encryption Works. Retrieved from How Stuff Works :

https://computer.howstuffworks.com/encryption2.htm

Vonnegut, S. (2015, 4 16). 15 Vulnerable Sites To (Legally) Practice Your Hacking Skills.

Retrieved from CheckMarx: https://www.checkmarx.com/2015/04/16/15-vulnerable-

sites-to-legally-practice-your-hacking-skills/

Wikipedia. (2017, 3 29). Hexadecimal. Retrieved 4 1, 2017, from Wikipedia, the free

encyclopedia: https://en.wikipedia.org/wiki/Hexadecimal

Young, D. B. (2018). Stream and Block Encryption. Retrieved from Foundations of Computer

Security: https://www.cs.utexas.edu/~byoung/cs361/lecture45.pdf

